Search results

1 – 10 of 400
Article
Publication date: 13 September 2021

Muhammet Öztürk and İbrahim Özkol

This study aims to propose, as the first time, the interval type-2 adaptive network-fuzzy inference system (ANFIS) structure, which is given better results compared to…

Abstract

Purpose

This study aims to propose, as the first time, the interval type-2 adaptive network-fuzzy inference system (ANFIS) structure, which is given better results compared to previously presented in the open literature. So, the ANFIS can be used effectively for training of interval type-2 fuzzy logic system (IT2FLS) parameters.

Design/methodology/approach

Karnik–Mendel algorithm (KMA) is modified to use in interval type-2 ANFIS. The modified Karnik–Mendel algorithm (M-KMA) is implemented to change the uncertain ANFIS parameters into known ones. In this way, the interval type-2 ANFIS removes uncertainties of IT2FLS. Therefore, the interval type-2 ANFIS is reduced to a simple one, i.e. less mathematical operation required. Only consequent parameters are trained, and the consequent parameters are chosen in the form of crisp.

Findings

By applying the mentioned procedure, it can be shown that interval type-2 ANFIS has generally better results compared to type-1 ANFIS. However, it was noticed that the worst results obtained in the case of interval type-2 ANFIS are equal to the best result obtained in the case of type-1 ANFIS. Therefore, users in this field can use this approach in solving nonlinear problems.

Practical implications

The interval type-2 ANFIS can be used as controller for highly nonlinear systems such as air vehicles.

Originality/value

As stated in the open literature, it is ineffective to use ANFIS for IT2FLS. In this study, the KMA is modified for IT2FLS, and it is seen that the ANFIS can be used effectively for IT2FLS.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 July 2018

Farhad Mirzaei, Mahmoud Delavar, Isham Alzoubi and Babak Nadjar Arrabi

The purpose of this paper is to develop three methods including artificial bee colony algorithm (ABC-ANN), regression and adaptive neural fuzzy inference system (ANFIS) to…

Abstract

Purpose

The purpose of this paper is to develop three methods including artificial bee colony algorithm (ABC-ANN), regression and adaptive neural fuzzy inference system (ANFIS) to predict the environmental indicators for land leveling and to analysis the sensitivity of these parameters.

Design/methodology/approach

This paper develops three methods including artificial bee colony algorithm (ABC-ANN), regression and adaptive neural fuzzy inference system (ANFIS) to predict the environmental indicators for land leveling and to analysis the sensitivity of these parameters. So, several soil properties such as soil, cut/fill volume, soil compressibility factor, specific gravity, moisture content, slope, sand per cent and soil swelling index in energy consumption were investigated. A total of 90 samples were collected from three land areas with the selected grid size of (20 m × 20 m). Acquired data were used to develop accurate models for labor, energy (LE), fuel energy (FE), total machinery cost (TMC) and total machinery energy (TM).

Findings

By applying the three mentioned analyzing methods, the results of regression showed that, only three parameters of sand per cent, slope and soil, cut/fill volume had significant effects on energy consumption. All developed models (Regression, ANFIS and ABC-ANN) had satisfactory performance in predicting aforementioned parameters in various field conditions. The adaptive neural fuzzy inference system (ANFIS) has the most capability in prediction according to least RMSE and the highest R2 value of 0.0143, 0.9990 for LE. The ABC-ANN has the most capability in prediction of the environmental and energy parameters with the least RMSE and the highest R2 with the related values for TMC, FE and TME (0.0248, 0.9972), (0.0322, 0.9987) and (0.0161, 0.9994), respectively.

Originality/value

As land leveling with machines requires considerable amount of energy, optimizing energy consumption in land leveling operation is of a great importance. So, three approaches comprising: ABC-ANN, ANFIS as powerful and intensive methods and regression as a fast and simplex model have been tested and surveyed to predict the environmental indicators for land leveling and determine the best method. Hitherto, only a limited number of studies associated with energy consumption in land leveling have been done. In mentioned studies, energy was a function of the volume of excavation (cut/fill volume). Therefore, in this research, energy and cost of land leveling are functions of all the properties of the land including slope, coefficient of swelling, density of the soil, soil moisture, special weight and swelling index which will be thoroughly mentioned and discussed. In fact, predicting minimum cost of land leveling for field irrigation according to the field properties is the main goal of this research which is in direct relation with environment and weather pollution.

Article
Publication date: 12 January 2021

Lie Yu, Lei Ding, Fangli Yu, Jianbin Zheng and Yukang Tian

The purpose of this paper is to apply a intelligent algorithm to conduct the force tracking control for electrohydraulic servo system (EHSS). Specifically, the adaptive…

115

Abstract

Purpose

The purpose of this paper is to apply a intelligent algorithm to conduct the force tracking control for electrohydraulic servo system (EHSS). Specifically, the adaptive neuro-fuzzy inference system (ANFIS) is selected to improve the control performance for EHSS.

Design/methodology/approach

Two types of input–output data were chosen to train the ANFIS models. The inputs are the desired and actual forces, and the output is the current. The first type is to set a sinusoidal signal for the current to produce the actual driving force, and the desired force is chosen as same as the actual force. The other type is to give a sinusoidal signal for the desired force. Under the action of the PI controller, the actual force tracks the desired force, and the current is the output of the PI controller.

Findings

The models built based on the two types of data are separately named as the ANFIS I controller and the ANFIS II controller. The results reveal that the ANFIS I controller possesses the best performance in terms of overshoot, rise time and mean absolute error and show adaptivity to different tracking conditions, including sinusoidal signal tracking and sudden change signal tracking.

Originality/value

This paper is the first time to apply the ANFIS to optimize the force tracking control for EHSS.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 21 March 2019

Mustafa Jahangoshai Rezaee, Mojtaba Dadkhah and Masoud Falahinia

This study aims to short-therm forecasting of power generation output for this purpose, an adaptive neuro-fuzzy inference system (ANFIS) is designed to forecast the output…

Abstract

Purpose

This study aims to short-therm forecasting of power generation output for this purpose, an adaptive neuro-fuzzy inference system (ANFIS) is designed to forecast the output power of power plant based on climate factors considering wind speed and wind direction simultaneously.

Design/methodology/approach

Several methods and algorithms have been proposed for systems forecasting in various fields. One of the strongest methods for modeling complex systems is neuro-fuzzy that refers to combinations of artificial neural network and fuzzy logic. When the system becomes more complex, the conventional algorithms may fail for network training. In this paper, an integrated approach, including ANFIS and metaheuristic algorithms, is used for increasing forecast accuracy.

Findings

Power generation in power plants is dependent on various factors, especially climate factors. Operating power plant in Iran is very much influenced because of climate variation, including from tropical to subpolar, and severely varying temperature, humidity and air pressure for each region and each season. On the other hands, when wind speed and wind direction are used simultaneously, the training process does not converge, and the forecasting process is unreliable. The real case study is mentioned to show the ability of the proposed approach to remove the limitations.

Originality/value

First, ANFIS is applied for forecasting based on climate factors, including wind speed and wind direction, that have rarely been used simultaneously in previous studies. Second, the well-known and more widely used metaheuristic algorithms are applied to improve the learning process for forecasting output power and compare the results.

Details

International Journal of Energy Sector Management, vol. 13 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 20 June 2019

Mehmet Konar

The purpose of this paper is to present a novel approach based on the differential search (DS) algorithm integrated with the adaptive network-based fuzzy inference system …

Abstract

Purpose

The purpose of this paper is to present a novel approach based on the differential search (DS) algorithm integrated with the adaptive network-based fuzzy inference system (ANFIS) for unmanned aerial vehicle (UAV) winglet design.

Design/methodology/approach

The winglet design of UAV, which was produced at Faculty of Aeronautics and Astronautics in Erciyes University, was redesigned using artificial intelligence techniques. This approach proposed for winglet redesign is based on the integration of ANFIS into the DS algorithm. For this purpose, the cant angle (c), the twist angle (t) and taper ratio (λ) of winglet are selected as input parameters; the maximum value of lift/drag ratio (Emax) is selected as the output parameter for ANFIS. For the selected input and output parameters, the optimum ANFIS parameters are determined by the DS algorithm. Then the objective function based on optimum ANFIS structure is integrated with the DS algorithm. With this integration, the input parameters for the Emax value are obtained by the DS algorithm. That is, the DS algorithm is used to obtain both the optimization of the ANFIS structure and the necessary parameters for the winglet design. Thus, the UAV was reshaped and the maximum value of lift/drag ratio was calculated based on new design.

Findings

Considerable improvements on the max E are obtained through winglet redesign on morphing UAVs with artificial intelligence techniques.

Research limitations/implications

It takes a long time to obtain the optimum Emax value by the computational fluid dynamics method.

Practical implications

Using artificial intelligence techniques saves time and reduces cost in maximizing Emax value. The simulation results showed that satisfactory Emax values were obtained, and an optimum winglet design was achieved. Thus, the presented method based on ANFIS and DS algorithm is faster and simpler.

Social implications

The application of artificial intelligence methods could be used in designing more efficient aircrafts.

Originality/value

The study provides a new and efficient method that saves time and reduces cost in redesigning UAV winglets.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 5 October 2018

Olalekan Shamsideen Oshodi and Ka Chi Lam

Fluctuations in the tender price index have an adverse effect on the construction sector and the economy at large. This is largely due to the positive relationship that…

Abstract

Fluctuations in the tender price index have an adverse effect on the construction sector and the economy at large. This is largely due to the positive relationship that exists between the construction industry and economic growth. The consequences of these variations include cost overruns and schedule delays, among others. An accurate forecast of the tender price index is good for controlling the uncertainty associated with its variation. In the present study, the efficacy of using an adaptive neuro-fuzzy inference system (ANFIS) for tender price forecasting is investigated. In addition, the Box–Jenkins model, which is considered a benchmark technique, was used to evaluate the performance of the ANFIS model. The results demonstrate that the ANFIS model is superior to the Box–Jenkins model in terms of the accuracy and reliability of the forecast. The ANFIS could provide an accurate and reliable forecast of the tender price index in the medium term (i.e. over a three-year period). This chapter provides evidence of the advantages of applying nonlinear modelling techniques (such as the ANFIS) to tender price index forecasting. Although the proposed ANFIS model is applied to the tender price index in this study, it can also be applied to a wider range of problems in the field of construction engineering and management.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 11 June 2020

Mohd Sabirin Rahmat, Khisbullah Hudha, Zulkiffli Abd Kadir, Noor Hafizah Amer, Muhammad Luqman Hakim Abd Rahman and Shohaimi Abdullah

The objective of this paper is to develop a fast modelling technique for predicting magneto-rheological fluid damper behaviour under impact loading applications.

Abstract

Purpose

The objective of this paper is to develop a fast modelling technique for predicting magneto-rheological fluid damper behaviour under impact loading applications.

Design/methodology/approach

The adaptive neuro-fuzzy inference system (ANFIS) technique was adopted to predict the behaviour of a magneto-rheological fluid (MRF) damper through experimental characterisation data. In this study, an MRF damper manufactured by Lord Corporation was used for characterisation using an impact pendulum test rig. The experimental characterisation was carried out with various impact energies and constant input currents applied to the MRF damper.

Findings

This research provided a fast modelling technique with relatively less error in predicting MRF damper behaviour for the development of control strategies. Accordingly, the ANFIS model was able to predict MRF damper behaviour under impact loading and showed better performance than the modified Bouc–Wen model.

Research limitations/implications

This study only focused on modelling technique for a single type of MRF damper used for impact loading applications. It is possible for other applications, such as cyclic loading, random loadings and system identification, to be studied in future experiments.

Original/Value

Future researchers could apply the ANFIS model as an actuator model for the development of control strategies and analyse the control performance. The model also can be replicated in other industries with minor modifications to suit different needs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 June 2003

Yakup Demir and Ayşegül Uçar

Recently, the modelling and simulation of switched systems containing new nonlinear components in electronics and power electronics industry have gained importance. In…

Abstract

Recently, the modelling and simulation of switched systems containing new nonlinear components in electronics and power electronics industry have gained importance. In this paper, both feed‐forward artificial neural networks (ANN) and adaptive network‐based fuzzy inference systems (ANFIS) have been applied to switched circuits and systems. Then their performances have been compared in this contribution by developed simulation programs. It has been shown that ANFIS require less training time and offer better performance than those of ANN. In addition, ANFIS using “clustering algorithm” to generate the rules and the numbers of membership functions gives a smaller number of parameters, better performance and less training time than those of ANFIS using “grid partition” to generate the rules. The work not only demonstrates the advantage of the ANFIS architecture using clustering algorithm but also highlights the advantages of the architecture for hardware realizations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 22 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 July 2012

Asli Aksoy, Nursel Ozturk and Eric Sucky

Demand forecasting in the clothing industry is very complex due to the existence of a wide range of product references and the lack of historical sales data. To the…

2536

Abstract

Purpose

Demand forecasting in the clothing industry is very complex due to the existence of a wide range of product references and the lack of historical sales data. To the authors' knowledge, there is an inadequate number of literature studies to forecast the demand with the adaptive network based fuzzy inference system for the clothing industry. The purpose of this paper is to construct a decision support system for demand forecasting in the clothing industry.

Design/methodology/approach

The adaptive‐network‐based fuzzy inference system (ANFIS) is used for forecasting demand in the clothing industry.

Findings

The results of the proposed study showed that an ANFIS‐based demand forecasting system can help clothing manufacturers to forecast demand more accurately, effectively and simply.

Originality/value

In this study, the demand is forecast in terms of clothing manufacturers by using ANFIS. ANFIS is a new technique for demand forecasting, it combines the learning capability of the neural networks and the generalization capability of the fuzzy logic. The input and output criteria are determined based on clothing manufacturers' requirements and via literature research, and the forecasting horizon is about one month. The study includes the real life application of the proposed system and the proposed system is tested by using real demand values for clothing manufacturers.

Details

International Journal of Clothing Science and Technology, vol. 24 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 October 2018

Ali Shams Nateri, Elham Hasanlou and Abbas Hajipour

Artificial intelligence (AI) methods, such as genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS), are capable of providing superior solutions for the…

Abstract

Purpose

Artificial intelligence (AI) methods, such as genetic algorithm (GA) and adaptive neuro-fuzzy inference system (ANFIS), are capable of providing superior solutions for the simulation and the modeling of complex problems. The purpose of this study is to estimate the dye and the silver nanoparticle (AgNP) concentrations of silver nanoparticle-treated silk fabrics by the aforementioned methods.

Design/methodology/approach

In this study, the color and the antimicrobial properties of silver nanoparticle-treated silk fabrics were matched by using the GA technique based on spectrophotometric color matching. The ANFIS method was also used; this method is based on the grid partitioning algorithm across four different methods. The first and second methods are provided for dye concentration prediction, and the third and the fourth methods are given for AgNP concentration prediction.

Findings

The mean of absolute error and root mean square (RMS) of the best dye concentration prediction by the ANFIS method based on the second method are 0.087 and 0.103, respectively. In addition, the mean of the absolute error and the RMS of the best results for AgNP concentration prediction by the ANFIS method by using the third method is 0.002 and 0.003, respectively. The obtained results indicate that the performance of the ANFIS method is better than the GA method.

Originality value

The simultaneous prediction of the color and the antimicrobial properties of silver nanoparticle-treated silk fabrics was performed by using the GA and the ANFIS. The suggested method led to acceptable accuracy for color and antibacterial matching.

Details

Pigment & Resin Technology, vol. 48 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 400