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Abstract
Purpose – This paper aims to illustrate the potential of high-frequency data for tourism and hospitality
analysis, through two research objectives: First, this study describes and test a novel high-frequency
forecasting methodology applied on big data characterized by fine-grained time and spatial resolution;
Second, this paper elaborates on those estimates’ usefulness for visitors and tourism public and private
stakeholders, whose decisions are increasingly focusing on short-time horizons.
Design/methodology/approach – This study uses the technical communications between mobile
devices and WiFi networks to build a high frequency and precise geolocation of big data. The empirical
section compares the forecasting accuracy of several artificial intelligence and time series models.
Findings – The results robustly indicate the long short-term memory networks model superiority, both for
in-sample and out-of-sample forecasting. Hence, the proposed methodology provides estimates which are
remarkably better than making short-time decision considering the current number of residents and visitors
(Naïve I model).
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Practical implications – A discussion section exemplifies how high-frequency forecasts can be
incorporated into tourism information and management tools to improve visitors’ experience and tourism
stakeholders’ decision-making. Particularly, the paper details its applicability to managing overtourism and
Covid-19 mitigating measures.
Originality/value – High-frequency forecast is new in tourism studies and the discussion sheds light on
the relevance of this time horizon for dealing with some current tourism challenges. For many tourism-related
issues, what to do next is not anymore what to do tomorrow or the next week.
Plain Language Summary – This research initiates high-frequency forecasting in tourism and
hospitality studies. Additionally, we detail several examples of how anticipating urban crowdedness requires
high-frequency data and can improve visitors’ experience and public and private decision-making.

Keywords Big data, Artificial intelligence, Overtourism, COVID-19, Crowdedness,
High-frequency forecast

Paper type Research paper

1. Introduction
The expansion of information and communication technologies (ICT) has revolutionized the
way in which we produce, consume and enjoy leisure; Tourism activities are no exception to
this general trend. As a parallel consequence, the ubiquitous use of technology generates
new types of data that were unimaginable only some years ago. Many of these information
sources are labeled as big data, characterized by huge amounts of observations and usually
higher frequencies (Li et al., 2018). Mariani et al. (2018) present a comprehensive review of
big data in tourism, identifying relevant contributions and areas for future research.

Many companies are currently storing increasing volumes of data, hoping that it can be
useful in the future. However, the characteristics of these data (volume, frequency, etc.)
imply that sometimes, they are not fully exploited to generate applicable knowledge. In line
with Scott et al.’s (2017) suggestions, there is a need for more fluent communication between
academia and public and private stakeholders to take full advantage of these relatively new
sources of information.

In this context, the main aim of this paper is to illustrate the potential of high frequency
(HF) data for tourism and hospitality. This general aim is divided into two related research
objectives: First, we describe and test the first HF forecasting methodology applied to
tourism-related big data; Second, we elaborate on how these forecasts can be used to extract
relevant information for visitors and tourism destination’s public and private stakeholders.

The availability of tourism and even general, HF data is still in its infancy. Hence, it is
not surprising that there is a scarcity of theoretical and empirical academic research
considering this time horizon. More research is needed to understand and model these data
challenges and to promote its application to inform tourism decisions and policies.
Particularly as many technological innovations (5G networks, the internet of things, travel
apps, etc.) are related to real-time or very HF data. This is clearly the case in tourism and
hospitality, as decisions are increasingly taken during the visit (Gretzel et al., 2006; Neuhofer
et al., 2012; Wang et al., 2012). In this sense, there is an emerging area of research based on
HF monitoring (Hardy et al., 2017; Huang et al., 2020; Zheng et al., 2017) which illustrates
how this type of data can be useful for tourism and hospitality analysis. However, the logical
research development of going from showing what is happening now (monitoring), to
anticipate the future (forecasting) constitutes a research gap. As far as the authors are aware,
only Xia et al. (2009, 2011) and Zheng et al. (2017) used a similar conceptual approach, as they
attempted to anticipate the next location visited by tourists, with a short-time horizon.

The big data considered in this paper is also original, as it uses the technical
communications between mobile devices that move around an urban destination (Palma de

IJCHM
33,6

1978



Mallorca, Balearic Islands, Spain) and the WiFi networks deployed through the city. Hence,
it falls under the categories of: “device data” following Li et al. (2018); and passive
positioning data as classified in Shoval and Ahas (2016).

Section 4 presents a detailed description of the data. However, several initial remarks
illustrate its significant potential, novel characteristics and replicability to other
destinations. First, many destinations, particularly cities, offer free WiFi through a public or
a contracted network. Hence, the empirical analysis and managerial applications explained
in the current paper are easily replicable, at an affordable cost. Second, the network-device
interactions are characterized by precise spatiotemporal information. The communications
are done with HF (in general, at least once per minute) and contain rich geolocation
information. In other words, the database contains pseudo-anonymized precise information
of the presence andmovement of people through the covered areas.

Regarding the first research objective, over the past few decades, many approaches
(Song et al., 2019) have been used to analyze, characterize and forecast tourism demand. In
this paper, we compare the forecasting accuracy of several advanced methods, which might
be able to capture the complex statistical characteristics of big data. In particular, we
consider four artificial intelligence methods (support vector machine, SVN; artificial neural
network, ANN; recurrent neural network, RNN; and long short-term memory networks,
LSTM) and two-time series methodologies (state-space ARIMA, SSARIMA; and multiplicative
SSARIMA,MSSARIMA).

Considering the second research objective, Section 6 elaborates on how anticipating high-
occupancy episodes at precise destinations’ locations has a myriad of applications for
tourism and hospitality, from visitor’s on-site decisions to advanced crowdedness’
management systems. This last topic is particularly relevant to deal with two challenges
recently faced by many tourism destinations: overtourism and social distancing measures
associated with Covid-19. Regarding overtourism, even if the current pandemic crisis has
reduced its importance in 2020 and maybe for some additional years, probably many
popular destinations will face similar problems in the near future. Overtourism cannot be
studied as a general phenomenon happening constantly at a tourism destination. In fact,
many of the nuances related to it are associated with overcrowding episodes at specific
locations and moments in time. This consideration also applies to social distancing
measures related to Covid-19 mitigation. In these two cases and in any other application,
crowdedness’ analysis should include precise time and location information. In other words,
they should be studied with frequencies higher than one day or longer horizons.

The rest of the paper is structured as follows: Section 2 presents the literature review.
Section 3 provides a basic overview of the methods used in this study. Those readers
interested in modeling can find further details in the Appendix. Section 4 details the origin of
big data and its main characteristics. Section 5 describes the in-sample and out-of-sample
accuracy measures. Section 6 explains several tourism applications of HF forecasting and
highlights the paper’s practical and theoretical implications. Finally, Section 7 summarizes
the conclusions and research limitations.

2. Literature review
This section starts revising briefly some advances in generic tourism demand. A
comprehensive literature review can be found at Song et al. (2019). Afterward, we
concentrate on the specific issue of HF forecasting.

This paper uses time series and artificial intelligence models; Together with
econometrics, those are the main three families of quantitative tourism demand forecasting
(Song and Li, 2008). Time-series econometric has been extensively used in the literature
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(Chu, 1998; Kulendran andWitt, 2003; Loganathan and Ibrahim, 2010; Thushara et al., 2019).
In this vast literature, the most widely used methods are the autoregressive (AR) and
moving average (MA) (Geurts and Ibrahim, 1975; Witt and Witt, 1991), the AR integrated
MA (ARIMA) (Lim and McAleer, 2002) and the seasonal ARIMA (Lim and McAleer, 2000).
Recently, SSARIMA (Hyndman et al., 2008) and MSSARIMA (Svetunkov and Boylan, 2020)
were proposed as advanced forecasting alternatives.

Some authors indicated that time series models may yield unsatisfactory forecasting
results, particularly when non-linearity and noise exist in the data. In fact, machine learning
(ML) approaches are attracting increasing interest for predicting tourism demand.
Methodologies such as ANN and SVM are often recommended in the literature. Pouyanfar
et al. (2018) suggested that these techniques were more appropriate to capture non-linear
relationships. Bedi and Toshniwal (2019) claim that these models outperform various
forecasting models commonly used so far. Chen and Wang (2007) compare SVM,
backpropagation neural network (BPNN) and ARIMA to forecast tourists’ arrivals to China.
They conclude that SVM outperforms the neural networks and ARIMA models in terms of
normalized mean square error (NMSE) and mean absolute percentage error (MAPE).
Aslanargun et al. (2007) also compared ARIMA with ANN and suggested a higher
performance of ANN. Li and Cao (2018) introduced RNN and LSTM for forecasting tourism
flows. They found that LSTMmethods perform better than ARIMA and BPNN.

Hence, many previous studies found that ML provides good forecasting performance.
However, these methodologies also have some limitations. First, they require large data for
algorithm training. Additionally, they are time-consuming and require advanced
computational resources to produce reliable forecasts. Furthermore, some previous papers
(Claveria and Torra, 2014) indicated that ANN does not outperform ARIMA, especially for
short-time horizons. A final source of criticism (Xu et al., 2016) is that although ML is
computationally accurate and exhibits satisfactory forecasting performance, it is basically a
“black-box” that lacks explanatory capacity. In this sense, they cannot be used to provide
causal interpretations.

The above paragraphs show that time series and artificial intelligence have been
extensively used. However, previous studies focused basically on low-frequency data
(yearly, quarterly, monthly and exceptionally, daily). Two main reasons may explain the
dominance of these frequencies: the lack of data at higher frequencies and the need to
answer relevant research questions within the lower frequencies’ domain. Nonetheless, as it
has been described in the introduction, the ICT generalization produces new databases
characterized by much higher frequencies (close to real-time data) which provide innovative
knowledge for tourism and hospitality.

HF prediction is new in tourism research. However, it has been increasingly used in other
research fields as transport, financial markets or environmental studies. Kumar et al. (2013)
applied ANN to forecast short-term traffic flows using 5 and 15min data. Aqib et al. (2019)
used deep learning methods to forecast traffic data on freeways with a 5min frequency.
They conclude that HF data produces near-real-time forecasts which are useful for dynamic
road traffic management. Xing et al. (2019) developed asymmetric extreme learning machine
cluster model to predict traffic congestion with 10min intervals. In the financial field,
Degiannakis and Filis (2018) supported HF forecasting, emphasizing that financial markets’
intraday information should not be ignored. In this line, Lachiheb and Gouider (2018)
successfully found that deep learning neural networks could forecast 5min returns at the
Tunisian stock markets. Chen et al. (2020) and Shintate and Pichl (2019) considered 5min
frequencies for studying cryptocurrencies. Both papers indicate that ML algorithms have
higher efficiency than classical statistical methods. Finally, HF data were also applied by

IJCHM
33,6

1980



Khosravi et al. (2018) in environmental research. They proposed three models of ML
algorithms (multilayer feed-forward neural network, support vector regression and adaptive
neuro-fuzzy inference system) to predict wind speed, wind direction and output power of a
wind turbine measured at HF intervals. They found that support vector regression provided
the best forecasts.

3. Methodology
This paper applies several methodologies and compares its forecasting accuracy. The choice
of models is based on the data’s characteristics. Despite the popularity of classical ARIMA-
type approaches, these models display a poor performance when forecasting large, complex
and nonlinear data (Rundo et al., 2019). Thus, more advanced time series models such as
state-space-type models (SARIMA and MSARIMA) and deep learning models (ANN, RNN
and LSTM) are more appropriate to forecast HF data. These models have similar
advantages as they account for nonlinear dynamic behaviors. In fact, state-space
(Dordonnat et al., 2008; Elghafghuf et al., 2018) and deep learning (Kuo and Huang, 2018;
Paoli et al., 2011) have been used before for HF forecasting. This section presents the basic
methodologies’ characteristics, while further mathematical and technical details can be
found in the Appendix.

3.1 Support vector machine
The support vector machine (SVM) is a popular and robust artificial intelligence method,
based on learning algorithms, which has been widely used (Cortes and Vapnik, 1995; Smola
and Scholkopf, 2004). This is a flexible forecasting technique that provides accurate tourism
forecasts (Chen and Wang, 2007). Its main advantages are that structural complexity is
controlled in the optimization and it uses convex quadratic programming that leads to a
globally optimal solution.

3.2 Artificial neural network
ANN is a deep learning method that captures various forms of non-linear relationships. There
are several types of ANN, but the most popular is the multilayer perceptron. The model is
based on self-learning and self-adapting protocols, which make it suitable for finding the
relationship between a set of inputs and an output (Zhang et al., 1998). It consists of three
components (a multi-layer, weights and neurons) that connect the inputs and the output. In
terms of the estimation procedure, backpropagation is usually used to find the optimal weights.
ANN is an iterative and recursivemethod to find the weights that minimize the loss function.

Researchers need to define the number of layers in the ANN’s structure. Following
previous literature (Seyyedsalehi and Seyyedsalehi, 2015; Yin et al., 2017) we considered an
ANN’s structure with five-layers; each contains j neurons connected among them and with
all the neurons in its neighbor layers.

3.3 Recurrent neural network
RNN is an ANN’s extension introduced to deal with historical data dependencies. This
network records the information from the past and uses the current output to predict the
next output. RNN has repetitive loops that combine previous and new input information to
predict current and future outputs (Mandic and Chambers, 2001).

Bandara et al. (2017) mentioned that although RNN is successful in solving short-term
dependencies, they cannot handle long-term dependencies. This limitation is due to what is
called the “vanishing gradient problem”: as time advances, the gradient becomes smaller. As
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a consequence, it is more difficult to train the algorithm in the presence of long-term effects.
LSTMwas suggested to solve this limitation.

3.4 Long short-term memory network
This deep learning model is an extension of RNN that produces accurate forecasts (Li and
Cao, 2018; Zhang et al., 2019). LSTM effectively solves vanishing gradients by using
memory cells (Hochreiter and Schmidhuber, 1997). This model can process both single data
points and entire sequences of data. The architecture of LSTM consists of input, forgotten
and output gates.

3.5 State-space autoregressive integrated moving average and multiplicative state-space
autoregressive integrated moving average
The SSARIMA was introduced by Harvey and Phillips (1979). Afterward, Hyndman et al.
(2008) extended the model and suggested the recursive estimation for obtaining the model’s
parameters. By using the state space approach, it is possible to find the appropriate
ARIMA’s order without hypotheses testing. Instead, this approach performs model selection
based on the information criteria (Svetunkov and Boylan, 2020). In its application to big data
analysis selecting ARIMA’s order is quite slow and troublesome. Thus, SSARIMA reduces
the computation time in the estimation process.

The main advantages of SSARIMA are: First, it generates predictions on observation
t=0, which increases the estimation’s degrees of freedom (Hyndman et al., 2008). It should
be acknowledged that this general advantage is not relevant in its application to big data, as
there are many observations. Second, it is based on time-varying parameters, so it provides
additional flexibility. Third, SSARIMA is estimated by maximum likelihood, thus it is easy
to apply information criteria for selecting the best model specification without hypotheses
testing. It should be noted that a 5 min’ frequency involves producing forecasts for a large
data set. Hence, the automatized order selection, instead of the manual analysis of
conventional ARIMA, is relevant for big data applications (Ramos et al., 2015).

Recently, Svetunkov and Boylan (2020), indicated that SSARIMA involves multiple
estimation steps, which implies a high computational cost. Thus, they proposed
MSSARIMA, which decreases the transition matrix dimension by skipping zero
polynomials. As a result, its estimation is remarkably faster than SSARIMA on HF data.
That implies a relevant decrease in computational costs, which deserves consideration in
this type of analyzes.

3.6 Forecasting accuracy
Conventionally, the forecasting accuracy is evaluated by analyzing two loss functions,
namely, root mean squares error (RMSE) and mean absolute error (MAE). Sometimes, these
two loss functions provide different ranking complicating model selection (Ma et al., 2019).
Consequently, this paper also conducted the model confidence set (MCS) of Hansen et al.
(2011) to analyze the robustness of the forecasting results. This procedure consists of a
sequence of statistical tests that identifies the “superior set models” (SSM). Specifically, MCS
evaluates if the forecasting performance of a candidate model is significantly different from
a reference model. If the performance is not significantly different, it will be included in the
SSM.

In this study, RMSE and MAE are used as loss functions for the MCS tests, which are
implemented through a 1,000 replications’ bootstrap. The performance of all candidate
models is evaluated and if the baseline one is not rejected, a new candidate is then compared.
Themodel with the highest p-value is selected as the best forecasting option.

IJCHM
33,6

1982



4. Big data source: origin, characteristics and statistical description
4.1 Origin of the data
Data is elaborated from the communications between the public WiFi network of an
urban tourism destination, Palma de Mallorca and the mobile devices in its coverage area.
The network, Palma’s SmartWiFi (P-SW), provides free internet services in most city
areas. All the system is managed by a single firm, WIONGO.

Palma is the capital of Mallorca Island and its international airport’s location. With more
than 11.8 million visitors in 2019 (86% international) Mallorca is one of the main tourism
destinations in the Mediterranean. Figure 1 displays the location of the island (panel a) and
the city (panel b). Palma has around 50,000 tourism beds (15 of the Island’s total), so it is a
destination itself and it is also a frequent one-day excursion for those visitors staying in
different areas. Palma is an appropriate destination to prove the usefulness of HF
crowdedness forecasts as it was among the first territories in which overtourism arose as
a social debate labeled as tourismophobia (Milano et al., 2019). Regarding the impact of
Covid-19, its insularity implies high air connectivity dependence; hence it has been severely
impacted by the pandemic. Like any other destination, the short-run tourism evolution will

Figure 1.
Location of Mallorca

(a), Palma (b) and
Paseo del Borne (c)
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be very dependent on its safe destination image and social distancing is among the top
Covid-19 safety protocols.

In terms of data generation, any mobile device with its WiFi adapter enabled is
constantly screening the available networks. The interaction between the device and a
network generates a record of request start and finish timestamp (with EPOCH coding by
the second), unique device’s Media Access Control (MAC) and precise location. Alessandrini
et al. (2017) concluded that WiFi data provides high spatial resolution, appropriate for urban
mobility analysis. Regarding privacy protection and ethical concerns, the technical data
does only report the number of devices in different locations. Hence, it does not include any
type of personal information. In this sense, this data follows the European Regulation (2016/
679; EU, 2016) that indicates: “The principles of data protection should, therefore, not apply
to anonymous information, namely, information which does not relate to an identified or
identifiable natural person.”TheMAC addresses are not classified as a personal information
because they only identify a particularWIFI transceiver unrelated to the user’s identity.

WiFi data has not been applied before in tourism research. The information can be
classified as passive position data (Shoval and Ahas, 2016). As such, it presents some
similarities with that provided by private mobile operators which have been successfully used
in tourism research (Ahas et al., 2007, 2008; Raun et al., 2016). However, public WiFi data
presents some distinctive features that might be appealing for tourism destinations such as
lower cost; all information is collected with a homogeneous style and the geolocation data is
very precise (note that usually private telecommunications companies provide broad locations).

Each data set might be more appropriate for some research objectives. Data from mobile
operators or internet-based applications (Apple, Google, Baidu, etc.) provide useful insight for
analyzing movements through a wider geographic context. WiFi network data has advantages
for specific locations such a: city area, tourism attraction, beach area and boardwalk.

4.2 Big data characteristics, zoning and devices’ characterization
This paper uses data collected during 2019’s high tourism season (July to September).
Mallorca has a remarkable seasonality; those three months account for 47% of annual
arrivals (INE, 2020). Hence, that is the appropriate period for considering issues related to
the destination’s crowdedness. The database gathers a daily average of 3.7 million
observations, frommore than 214,000 unique devices.

Several decisions have been made to limit the research: First, we aggregated the real-time
data into 5 min intervals, which captures the dynamic city use. Second, the paper presents
the analysis of only one specific location. To do the zoning a homogeneous grid was drawn
on the city’s map. Taking into account its tourism relevance and the optimal WiFi coverage,
we choose to present the analysis for the area corresponding to Paseo del Borne, indicated in
Figure 1 (panel c). This is the city’s heart and a usual pedestrian route with numerous shops,
restaurants, bars and historical buildings. Third, the forecast exercise is based on the
observations between 8 a.m. and 8 p.m. The intraday pattern presented in Figure 2 indicates
that pedestrians concentrate during that period.

Additionally, the observations were classified as city residents or visitors. Hence, we can
model their different urban space use. Any crowdedness’ analysis should not focus only on
tourists or residents, as both groups share the city. However, different policies and tools
might be appropriate for each group. The classification of observations as residents or
visitors is based on its presence over the three months’ period. A recursive query has been
programed to label as visitors those observations which are only captured in a period equal
or inferior to 10 days. The other observations are considered residents.
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With all the above considerations, the final sample consists of 13,248 observations
counting the number of residents and visitors in the selected location. Figure 2 plots
the intraday (15th of July) pattern of the total number of devices and its
disaggregation as residents or visitors. The graph illustrates the different behavior
of the two groups: Residents have a more constant presence throughout the day; while
visitors tend to start gathering later (after 10 a.m.), they outnumber the residents during the
central part of the day and their presence is slightly decreasing after 3 p.m. We found a
relatively stable pattern so that there is intraday time dependence. Finally, it is interesting that
the city use peaks are usually determined by a visitors’ increase. This finding supports the use
of specifically managing visitors’ flows to avoid overcrowding episodes in a given time and
space.

Table 1 presents the main descriptive statistics; the mean is 319.5 for residents and
209.2 for visitors. Hence, there is a relevant proportion (65%) of visitors. That is an
expected result as the area corresponds to the commercial streets of an urban tourism
destination during its high season. Given data’s HF, the standard deviations are quite
high, 87.3 for residents and 72.3 for visitors. Both series exhibit high kurtosis (greater
than 3), therefore these data’s distribution tails are heavier than in a normal
distribution. The last row of Table 1 displays the augmented Dickey–Fuller’s unit root
test conducted to evaluate data stationarity. The results reject the null hypothesis of a
unit root at a 1% significance level, implying that the series is stationary and can be
modeled without further transformations.

Table 1.
Data description

Statistics Residents Visitors

Mean 319.50 209.22
Median 324 1,962
Maximum 1,205 7,602
Minimum 46 132
Std. dev. 72.30 87.30
Skewness 0.28 0.96
Kurtosis 8.448 4.69
Observations 13,248 13,248
ADF �16.54*** �13.99***

Note: *** indicates 1% significance level

Figure 2.
Intraday behavior
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5. Models’ forecasting accuracy
The next two subsections present forecasting accuracy based on the two-loss functions and
MCS. The results are presented for both, in-sample and out-of-sample exercises. The
conventional former analysis (Section 5.1) can be used to compare our results with previous
literature. The out-of-sample analysis (Section 5.2) has been specifically designing to
illustrate how the current approach provides HF forecasts useful to address tourism
destination’s challenges related to spatiotemporal crowdedness.

5.1 In-sample statistical performance
This first empirical analysis evaluates the in-sample forecasts to compare the overall
performance of the six proposed models. Hence, this section uses MAE, RMSE and MCS to
evaluate each model’s ability to represent the real data. The in-sample statistical
performance for the two groups (residents and visitors) are provided in Table 2. In terms of
interpretation, a lower RMSE andMAE and a greater, p-value imply that the model provides
more accurate forecasts.

Table 2 results’ consistently indicate that in the current database, LSTM has an
outstanding performance for forecasting in-sample residents and visitors. In other words, it
is undoubtedly statistically superior to all other models. The loss function measures (MAE
and RMSE) present lower values for LSTM. Additionally, the MCS rejects all other
methodologies. The big data complexity hinders providing a strong explanation for the
above results. However, LSTM’s capacity to adapt to changing situations while preserving
its long-termmemory seems to provide appropriate characteristics to this model.

5.2 Out-of-sample forecasting accuracy
This paper proposes to use the above methodology to provide a recursive HF estimation.
Hence, the out-of-sample analysis can be done for any time span, provided that there was
sufficient data for model specification and algorithm training. Out of the 13,248
observations, Table 2 indicates the three specific periods of 1 h that have been used to
present the models’ forecasting accuracy. The selection criterion has been to choose: one
period per month, in a moment of high urban crowdedness, but that was not an outlier.

Table 2.
In-sample forecasting
accuracy

Model MAE MCS RMSE MCS

Residents
SSARIMA 27.2096 0.0 36.9795 0.0
MSARIMA 25.6556 0.0 35.1861 0.0
ANN 26.1371 0.0 35.7731 0.0
LSTM 7.1775 1.0 11.9080 1.0
RNN 26.4149 0.0 36.5010 0.0
SVM 26.0751 0.0 35.7283 0.0

Visitors
SSARIMA 26.8257 0.0 41.8671 0.0
MSSARIMA 25.3089 0.0 38.9997 0.0
ANN 25.8263 0.0 39.9966 0.0
LSTM 6.9909 1.0 12.6752 1.0
RNN 26.5301 0.0 40.5582 0.0
SVM 26.2127 0.0 40.3041 0.0

Note: The italic numbers indicate the lowest error rate (MAE and RMSE)
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Hence, these three episodes correspond to a situation when the number of devices is around
its statistical maximum (the third quartile, plus half of the interquartile difference, Q3-Q1).

The models’ parameters are optimized on a training set, indicated in the second column
of Table 3; afterward, the forecasting period (third column) is used to test each model’s
forecast against reality.

A detailed analysis of the models’ accuracy is presented in Table 4 for residents and
Table 5 for visitors. The two tables have a similar structure; they present the MAE, RMSE
and MCS for each model and period. Note that we also included a basic Naïve 1 (No change)
model, as it is frequently used as a benchmark (Athanasopoulos et al., 2011). Moreover, it
indicates what information would have been used to make future decisions based on
monitoring, instead of HF forecasting.

Additionally, the results are presented for two forecast horizons: tþ 6, which
corresponds to a half-an-hour; and tþ 12, which is a 1-h forecast. A rolling estimation

Table 3.
Training and

forecasting periods

Period of
study Training period Forecasting period

Period 1 1 July 2019, 8.00 am to 15 July 2019, 10.45 am 15 July 2019, 10.50 am.–11.50 am
Period 2 1 August 2019, 8.00 am to 27 August 2019, 9.40 am 27 August 2019, 9.45 am.–10.45 am
Period 3 1 September 2019, 8.00 am to 21 September 2019, 10.40 am 21 September 2019, 10.45 am–11.45 am

Table 4.
Out-of-sample

forecasting accuracy
for residents

6-steps ahead 12-steps ahead
Model MAE MCS RMSE MCS MAE MCS RMSE MCS

Period 1
SSARIMA 36.6931 0.0 39.1526 0.0 46.9385 0.0 50.1991 0.0
MSARIMA 40.9271 0.0 43.1191 0.0 50.8621 0.0 53.3158 0.0
ANN 34.4374 0.0 38.1727 0.0 45.5748 0.0 49.0298 0.0
LSTM 25.1175 1.0 30.6745 1.0 29.0328 1.0 33.7029 1.0
RNN 34.9685 0.0 38.9538 0.0 45.6026 0.0 49.9126 0.0
SVM 38.5527 0.0 42.5519 0.0 49.4569 0.0 53.1682 0.0
Naïve 1 42.7589 0.0 45.3650 0.0 50.8461 0.0 54.0716 0.0

Period 2
SSARIMA 16.5303 0.31 18.2601 0.25 17.0349 0.0 18.8242 0.0
MSARIMA 19.5120 0.0 20.5429 0.0 19.4928 0.0 22.7098 0.0
ANN 27.0616 0.0 28.9998 0.0 29.6235 0.0 32.6826 0.0
LSTM 16.4383 1.0 19.6039 1.0 13.8928 1.0 15.3219 1.0
RNN 32.2864 0.0 34.5893 0.0 29.7150 0.0 32.7571 0.0
SVM 22.8643 0.0 24.9171 0.0 22.9737 0.0 24.9730 0.0
Naïve 1 32.2121 0.0 33.1662 0.0 30.9231 0.0 34.8500 0.0

Period 3
SSARIMA 26.7798 0.0 31.6663 0.0 21.8793 0.0 26.0592 0.0
MSARIMA 24.1895 0.0 28.2725 0.0 22.7425 0.0 26.3276 0.0
ANN 28.4134 0.0 33.8211 0.0 25.1311 0.0 28.1644 0.0
LSTM 22.7517 1.0 24.9344 1.0 13.4012 1.0 14.9947 1.0
RNN 23.6151 0.25 25.3158 0.31 18.4009 0.0 20.9979 0.0
SVM 30.1544 0.0 35.1258 0.0 27.1183 0.0 29.9809 0.0
Naïve 1 31.7545 0.0 36.1185 0.0 30.3846 0.0 32.5221 0.0

Note: The italic numbers indicate the lowest error rate (MAE and RMSE)
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scheme was adopted to maintain a constant sample size over the out-of-sample forecasts. In
this sense, for each forecast (tþ j; j: 1,. . ., 12) the initial observations of the training periods
are deleted and the corresponding (tþ j)-1 forecasts are added.

Interestingly, in all cases RMSE, MAE and MCS provide a uniform result: a remarkable
LSTM’s forecasting superiority with the current database. Note that this model presents the
best performance at the two relevant forecasting horizons, 6- and 12-step ahead, in both
samples (residents and visitors) and for all periods. In all cases, LSTM has the lowest RMSE
and MAE, indicating that the deviation between the predicted and the actual number of
individuals is minimized as compared with all the competing models. This is corroborated
by MCS. The LSTM p-values are equal to one, while for the other five models their values
are below the 0.10 threshold. It means that these models would be removed in the MCS
inspection process, and thus the LSTMwould be the only survivor model.

From a methodological point of view, this robust result indicates that LSTM is an
appropriate approach to forecast long HF sequences, at least for the current database. Note
that it is a recurrent neural network, so the algorithm learns from previous episodes. This
result corroborates the findings of Zhang et al. (2019), which also found a stronger
performance of LSTM for long dependencies.

6. Discussion
Beyond the technical analysis provided in the previous paragraphs, this discussion section
aims at First, illustrating how the HF forecasting approach proposed in this paper has

Table 5.
Out-of-sample
forecasting accuracy
for visitors

6-step ahead 12-step ahead
Model MAE MCS RMSE MCS MAE MCS RMSE MCS

Period 1
SSARIMA 41.4288 0.0 44.2381 0.0 42.5185 0.0 51.8779 0.0
MSARIMA 47.3881 0.0 49.9024 0.0 46.6675 0.0 57.1757 0.0
ANN 46.1676 0.0 49.2756 0.0 54.8511 0.0 60.9110 0.0
LSTM 28.9648 1.0 30.4676 1.0 32.1464 1.0 45.2101 1.0
RNN 45.1481 0.0 46.4471 0.0 46.1706 0.0 56.7902 0.0
SVM 48.8050 0.0 55.8872 0.0 58.6210 0.0 64.5037 0.0
Naïve 1 50.3311 0.0 53.8176 0.0 58.6815 0.0 64.8541 0.0

Period 2
SSARIMA 35.8164 0.0 39.5107 0.0 31.0932 0.0 35.9545 0.0
MSARIMA 21.1724 0.0 26.0561 0.0 27.9434 0.0 30.3806 0.0
ANN 42.0653 0.0 43.9968 0.0 44.2593 0.0 46.8779 0.0
LSTM 20.0821 1.0 22.7662 1.0 19.4792 1.0 20.9253 1.0
RNN 40.4964 0.0 43.9783 0.0 42.0421 0.0 45.4903 0.0
SVM 28.3697 0.0 29.9665 0.0 29.5785 0.0 34.9865 0.0
Naïve 1 42.3125 0.0 44.1540 0.0 48.9230 0.0 51.3325 0.0

Period 3
SSARIMA 31.9379 0.0 38.7095 0.0 32.0336 0.0 37.1365 0.0
MSARIMA 32.9646 0.0 39.3103 0.0 32.1794 0.0 39.8404 0.0
ANN 38.0234 0.0 44.4781 0.0 39.5558 0.0 45.8675 0.0
LSTM 28.7461 1.0 30.0618 1.0 26.1132 1.0 27.5015 1.0
RNN 30.0229 0.0 33.1055 0.0 30.3003 0.0 35.7012 0.0
SVM 50.2901 0.0 55.6145 0.0 47.6601 0.0 52.6841 0.0
Naïve 1 53.1315 0.0 56.3621 0.0 48.1125 0.0 53.1002 0.0

Note: The italic numbers indicate the lowest error rate (MAE and RMSE)
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relevant practical applications for tourism and second, discussing several theoretical
implications.

6.1 Practical implications
Let start emphasizing what would be provided to destinations’ visitors, private and public
tourism stakeholders: the above methodology implements a program that sequentially (for
example, every 30min or 1 h), generates an HF forecast (5min frequency) of the number of
residents and visitors in an area of interest (company’s surroundings, tourism attraction,
transport network, commercial street, city’s pedestrian mobility bottleneck, etc.).

To visualize these forecasts, Figures 3 and 4 represent the out-of-sample forecasts and
the actual number of residents (Figure 3) and visitors (Figure 4) observed after. We used the
same periods described in Table 3.

Both figures display a 1-h (with 5 min frequency) out-of-sample models’ forecast (what
would have been provided to stakeholders) and the real number observed afterward. These
real observations are the red lines, while the other series correspond to the six models’
forecast, plus the Naïve 1 (horizontal green line). As found in Tables 4 and 5, the figures
unanimously indicate the superiority of LSTM (orange). This model clearly displays a
remarkable capacity to anticipate visitors’ and residents’ numbers.

It is particularly relevant to compare LSTM (orange, the chosen HF forecasting model),
Naïve 1 (horizontal green line, which implies making future decisions based on the current
situation) and the observed number (red, what subsequently happened in reality). Clearly, the
proposed forecast is much closer to reality than a simple no-change estimation. Hence, by using
this paper’s approach, visitors and tourism stakeholders make decisions based on a robust
crowdedness forecast, which is remarkablymore accurate than using only current information.

These recursive forecasts can be integrated into any tourismmanagement or information
tool. Some examples include Tourism recommender systems that integrate crowdedness’
forecasts; Online heat-maps showing pedestrian occupancy; Or advance alert systems that
trigger appropriate policy responses when the forecasted number of users is above a certain
threshold. Additionally, once the forecasts are shared, there are innumerable applications for
visitors and public and private decision-making such as real-time visitors’ decision on where
to go avoiding crowds; In-site marketing activated at high occupancy’s episodes; Traffic
flow measures to improve urban mobility, as changing traffic lights’ duration; Dynamic
pricing on tourism attractions considering crowdedness; or public resource’s allocation, as
police or tourism information staff.

Moreover, forecasting cities’ crowdedness is crucial for managing two challenges of
many mature tourism destinations: guaranteeing social distancing related to Covid-19;
And, with a longer-term perspective, dealing with overtourism. Regarding the former, the
Covid-19 pandemic has brought to light social (or physical) distancing, as the main cost-
efficient measure to deal with the pandemic. Many destinations are currently striving to be
considered “safe” destinations. In this sense, implementing high-occupancy alert systems
like those described above is a useful tool for destinations. With a more long-run
perspective, it is likely that overtourism debates will emerge again. This paper’s
methodology provides a tool to anticipate episodes of overcrowding and implement
mitigating policies.

6.2 Theoretical implications
The paper’s main contributions, initiating HF forecasting in tourism and elaborating on its
applications, are essentially empirical and practical. However, several theoretical
implications are presented in the following paragraphs.
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Figure 3.
Residents: real data
and forecasts
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Figure 4.
Visitors: real data and

forecasts
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The paper emphasizes that most aspects of human behavior are dynamic in nature (Järv
et al., 2018) and change in space and time. The relevance of combining these two dimensions
was already highlighted in classical behavioral geography. Time geography (Hägerstraand,
1970) incorporated time budget allocation to study the space use. Since then, data capture
techniques evolved from basic surveys and route diaries to portable devices and finally,
tracking technologies. This process led to richer data sets that pave new research avenues.
Tourism studies evolved from mainly focusing on the spatial analysis (Lew and McKercher,
2006; Xia et al., 2009) to incorporate a detailed time dimension (Shoval and Ahas, 2016;
Shoval and Isaacson, 2007). As data record methods were providing higher frequencies,
researchers were able to tackle more topics, as intradiurnal activities’ analysis (Birenboim
et al., 2013; Grinberger and Shoval, 2019). The currently available real-time or very HF data,
as the big data used in this paper, allows new conceptualizations with short-time horizons.

Additionally, in most previous tourism studies considering spatiotemporal analyzes, like
the ones mentioned above, the subjects of interest are the tourists and their behavior as they
move throughout the destination. That is clearly the focus of time allocation as explained in
time geography and of the above-cited papers which monitor and describe tourists’
behavior. Differently, in this paper, the subject of interest is the destination and the dynamic
use of its space. Any urban location has a given endowment of available space. When people
crowds, this scarce resource is exhausted and time-dependent congestion problems appear.
Hence, our conceptual approach is closer to the smart city paradigm (Kitchin, 2014) and its
application to tourism as smart destinations (Buhalis and Amaranggana, 2013; Xiang et al.,
2015).

Finally, the proven forecasting accuracy of our models supports the spatiotemporal
regularity of human mobility, which has been previously identified (Birenboim et al., 2013;
Song et al., 2010; Zheng et al., 2017). The individual regularity can be extended to
understand aggregate regularities in the use of urban spaces.

7. Concluding remarks
During the last 20 years, ICT has invaded most aspects of our life. As a side effect, an
overwhelming amount of information is now recorded in what is usually labeled as big data.
On some occasions, these data sets provide extremely high frequencies (close to real-time
data) and precise spatial resolutions, which were inconceivable only some years ago.

With the above considerations in mind, this paper highlights the relevance and applicability
of tourism big data with HF. First, we faced the forecasting’s challenges; and then, we
discussed the usefulness of those estimates for visitors and tourism public and private
stakeholders, whose decisions are increasingly focusing on short-time horizons.

We used big data (3.7 million daily observations) obtained from the technical
communications between a public WiFi network and the mobile devices in its coverage area.
In this sense, the collecting protocol described in the paper is easily replicable in other
tourism destinations at a reasonable cost. The main data characteristics are its HF (by the
second) and its precise geolocation.

Regarding HF forecasting, four artificial intelligence methods and two-time series models
are compared to select the most accurate alternative for the current database. The paper
provides both, conventional in-sample forecasting analysis and several out-of-sample exercises.
The results robustly indicate that LSTM performs better considering loss-function analyzes
(MAE, RMSE) and MCS tests. This paper uses a single context-specific database, so the model
evaluation results, even if consistent with previous literature (Zhang et al., 2019), might be
different for other destinations. Nevertheless, the objective of the paper is the description of an
HF forecasting methodology, which is seminal in tourism studies and not the specific model
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selection. It is strongly recommended that subsequent applications to other tourism
destinations or data sets, performmodels’ evaluation as suggested in the paper.

Beyond the technical analysis of the models, the discussion section’s first part focuses on
practical applications for tourism and hospitality. We detailed how HF forecasting can be
used to improve both: on-site visitors’ experience and tourism public and private decision-
making in short-term horizons.

Additionally, we provided theoretical implications derived from the research conceptual
approach. As with any emerging study area, the theoretical body is still immature. We
believe that real-time data challenges are already here and will be increasingly attracting
tourism scholars. This process will contribute to creating the required body of knowledge on
HF analysis.

7.1 Limitations and future research
The current approach has some limitations that should be addressed by future research.
First, it is basically an empirical exercise based on robust forecasting techniques. In this
sense, it does not provide a theoretical foundation analysis. The methodologies used in the
paper have been consistently proven superior for forecasting. However, they are not
appropriate to identify causal relations or to perform policy evaluations (Song et al., 2019;
Song and Li, 2008). In this sense, future research should elaborate on the theoretical
implications of HF forecasts in general and specifically in tourism and hospitality.
Additionally, the data used in this paper is context-specific, as it has been captured at a
single destination. The extension of HF forecasting to other tourism destinations and
research objectives is needed to face current and future questions, which increasingly
involve short-time horizons.

References
Ahas, R., Aasa, A., Roose, A., Mark, Ü. and Silm, S. (2008), “Evaluating passive mobile positioning

data for tourism surveys: an Estonian case study”, Tourism Management, Vol. 29 No. 3,
pp. 469-486.

Ahas, R., Aasa, A., Silm, S. and Tiru, M. (2007), “Mobile positioning data in tourism studies and
monitoring: case study in Tartu, Estonia”, ENTER, pp. 119-128.

Alessandrini, A., Gioia, C., Sermi, F., Sofos, I., Tarchi, D. and Vespe, M. (2017), “WiFi positioning and
big data to monitor flows of people on a wide scale”, European Navigation Conference (ENC).
IEEE, pp. 322-328.

Aqib, M., Mehmood, R., Alzahrani, A., Katib, I., Albeshri, A. and Altowaijri, S.M. (2019), “Smarter
traffic prediction using big data, in-memory computing, deep learning and GPUs”, Sensors,
Vol. 19 No. 9, p. 2206.

Aslanargun, A., Mammadov, M., Yazici, B. and Yolacan, S. (2007), “Comparison of ARIMA, neural
networks and hybrid models in time series: tourist arrival forecasting”, Journal of Statistical
Computation and Simulation, Vol. 77 No. 1, pp. 29-53.

Athanasopoulos, G., Hyndman, R.J., Song, H. and Wu, D.C. (2011), “The tourism forecasting
competition”, International Journal of Forecasting, Vol. 27 No. 3, pp. 822-844.

Bandara, K., Bergmeir, C. and Smyl, S. (2017), “Forecasting across time series databases using long
short-termmemory networks on groups of similar series”, Vol. 8, pp. 805-815.

Bedi, J. and Toshniwal, D. (2019), “Deep learning framework to forecast electricity demand”, Applied
Energy, Vol. 238, pp. 1312-1326.

Birenboim, A., Anton-Clavé, S., Russo, A.P. and Shoval, N. (2013), “Temporal activity patterns of theme
park visitors”,Tourism Geographies, Vol. 15 No. 4, pp. 601-619.

Mobile
devices’
bigdata

1993



Buhalis, D. and Amaranggana, A. (2013), “Smart tourism destinations”, Information and
Communication Technologies in Tourism 2014, Springer International Publishing, Cham,
Vol. 31, pp. 553-564.

Chen, Z., Li, C. and Sun, W. (2020), “Bitcoin price prediction using machine learning: an approach to
sample dimension engineering”, Journal of Computational and Applied Mathematics, Vol. 365,
p. 112395.

Chen, K.Y. and Wang, C.H. (2007), “Support vector regression with genetic algorithms in forecasting
tourism demand”,TourismManagement, Vol. 28 No. 1, pp. 215-226.

Chu, F.L. (1998), “Forecasting tourism demand in Asian-Pacific countries”, Annals of Tourism
Research, Vol. 25 No. 3, pp. 597-615.

Claveria, O. and Torra, S. (2014), “Forecasting tourism demand to Catalonia: neural networks vs. time
series models”, EconomicModelling, Vol. 36, pp. 220-228.

Cortes, C. and Vapnik, V. (1995), “Support-vector networks”,Machine Learning, Vol. 20 No. 3, pp. 273-297.
Degiannakis, S. and Filis, G. (2018), “Forecasting oil prices: high-frequency financial data are indeed

useful”, Energy Economics, Vol. 76, pp. 388-402.
Dordonnat, V., Koopman, S.J., Ooms, M., Dessertaine, A. and Collet, J. (2008), “An hourly periodic state

space model for modelling French national electricity load”, International Journal of Forecasting,
Vol. 24 No. 4, pp. 566-587.

Elghafghuf, A., Vanderstichel, R., St-Hilaire, S. and Stryhn, H. (2018), “Using state-space models to
predict the abundance of juvenile and adult sea lice on Atlantic salmon”, Epidemics, Vol. 24,
pp. 76-87.

EU (2016), On the protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/E, European Union, 2016/679.

Geurts, M.D. and Ibrahim, I. (1975), “Comparing the Box-Jenkins approach with the exponentially
smoothed forecasting model application to Hawaii tourists”, Journal of Marketing Research,
Vol. 12 No. 2, pp. 182-188.

Gretzel, U., Fesenmaier, D. and O’Leary, J. (2006), “The transformation of consumer behavior”, in
Buhalis, D. and Costa, C. (Eds),Tourism Business Frontier, Elsevier, Oxford.

Grinberger, A.Y. and Shoval, N. (2019), “Spatiotemporal contingencies in tourists’ intradiurnal mobility
patterns”, Journal of Travel Research, Vol. 58 No. 3, pp. 512-530.

Hägerstraand, T. (1970), “What about people in regional science?”, Papers in Regional Science, Vol. 24
No. 1, pp. 7-21.

Hansen, P.R., Lunde, A. and Nason, J.M. (2011), “The model confidence set”, Econometrica, Vol. 79 No. 2,
pp. 453-497.

Hardy, A., Hyslop, S., Booth, K., Robards, B., Aryal, J., Gretzel, U. and Eccleston, R. (2017), “Tracking
tourists’ travel with smartphone-based GPS technology: a methodological discussion”,
Information Technology and Tourism, Vol. 17 No. 3, pp. 255-274.

Harvey, A.C. and Phillips, G.D. (1979), “Maximum likelihood estimation of regression models with
autoregressive-moving average disturbances”, Biometrika, Vol. 66 No. 1, pp. 49-58.

Hochreiter, S. and Schmidhuber, J. (1997), “Long short-termmemory”,Neural Computation, Vol. 9 No. 8,
pp. 1735-1780.

Huang, X., Li, M., Zhang, J., Zhang, L., Zhang, H. and Yan, S. (2020), “Tourists’ spatial-temporal
behavior patterns in theme parks: a case study of ocean park Hong Kong”, Journal of Destination
Marketing andManagement, Vol. 15.

Hyndman, R., Koehler, A.B., Ord, J.K. and Snyder, R.D. (2008), Forecasting with Exponential Smoothing:
The State Space Approach, Springer Science and Business Media.

INE (2020), “Tourist movement on borders survey (FRONTUR)”, Instituto nacional de Estadística,
available at: www.ine.es/en/index.htm

IJCHM
33,6

1994

http://www.ine.es/en/index.htm


Khosravi, A., Koury, R.N.N., Machado, L. and Pabon, J.J.G. (2018), “Prediction of wind speed and wind
direction using artificial neural network, support vector regression and adaptive neuro-fuzzy
inference system”, Sustainable Energy Technologies and Assessments, Vol. 25, pp. 146-160.

Kitchin, R. (2014), “The real-time city? Big data and smart urbanism”,GeoJournal, Vol. 79 No. 1, pp. 1-14.
Kulendran, N. and Witt, S.F. (2003), “Forecasting the demand for international business tourism”,

Journal of Travel Research, Vol. 41 No. 3, pp. 265-271.
Kumar, K., Parida, M. and Katiyar, V.K. (2013), “Short term traffic flow prediction for a non urban highway

using artificial neural network”,Procedia – Social and Behavioral Sciences, Vol. 104 No. 2, pp. 755-764.
Kuo, P.H. and Huang, C.J. (2018), “A high precision artificial neural networks model for short-term

energy load forecasting”, Energies, Vol. 11 No. 1, p. 213.
Lachiheb, O. and Gouider, M.S. (2018), “A hierarchical deep neural network design for stock returns

prediction”, Procedia Computer Science, Vol. 126, pp. 264-272.
Lew, A. and McKercher, B. (2006), “Modeling tourist movements: a local destination analysis”, Annals

of Tourism Research, Vol. 33 No. 2, pp. 403-423.
Li, Y. and Cao, H. (2018), “Prediction for tourism flow based on LSTM neural network”, Procedia

Computer Science, Vol. 129, pp. 277-283.
Lim, C. and McAleer, M. (2000), “A seasonal analysis of Asian tourist arrivals to Australia”, Applied

Economics, Vol. 32 No. 4, pp. 499-509.
Lim, C. and McAleer, M. (2002), “Time series forecasts of international travel demand for Australia”,

TourismManagement, Vol. 23 No. 4, pp. 389-396.
Li, J., Xu, L., Tang, L., Wang, S. and Li, L. (2018), “Big data in tourism research: a literature review”,

TourismManagement, Vol. 68, pp. 301-323.
Loganathan, N. and Ibrahim, Y. (2010), “Forecasting international tourism demand in Malaysia using Box

Jenkins Sarima application”, South Asian Journal of Tourism andHeritage, Vol. 3 No. 2, pp. 50-60.
Ma, R., Zhou, C., Cai, H. and Deng, C. (2019), “The forecasting power of EPU for crude oil return

volatility”, Energy Reports, Vol. 5, pp. 866-873.
Mandic, D.P. and Chambers, J. (2001), Recurrent Neural Networks for Prediction: learning Algorithms,

Architectures and Stability, JohnWiley and Sons, Inc.
Mariani, M., Baggio, R., Fuchs, M. and Höepken, W. (2018), “Business intelligence and big data in

hospitality and tourism: a systematic literature review”, International Journal of Contemporary
Hospitality Management, Vol. 30 No. 12, pp. 3514-3554.

Milano, C., Novelli, M. and Cheer, J.M. (2019), “Overtourism and tourismphobia: a journey through four
decades of tourism development, planning and local concerns”,Tourism Planning and Development,
Vol. 16 No. 4, pp. 353-357.

Neuhofer, B., Buhalis, D. and Ladkin, A. (2012), “Conceptualising technology enhanced destination
experiences”, Journal of DestinationMarketing andManagement, Vol. 1 Nos 1/2, pp. 36-46.

Paoli, C., Notton, G., Nivet, M.L., Padovani, M. and Savelli, J.L. (2011), “A neural network model
forecasting for prediction of hourly ozone concentration in Corsica”, 2011 10th International
Conference on Environment and Electrical Engineering, IEEE, pp. 1-4.

Poornima, S. and Pushpalatha, M. (2019), “Prediction of rainfall using intensified LSTM based
recurrent neural network with weighted linear units”,Atmosphere, Vol. 10 No. 11, p. 668.

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M.P., Shyu, M.L., Chen, S.C. and Iyengar, S.S.
(2018), “A survey on deep learning: algorithms, techniques, and applications”, ACM Computing
Surveys, Vol. 51 No. 5, p. 92.

Ramos, P., Santos, N. and Rebelo, R. (2015), “Performance of state space and ARIMAmodels for consumer
retail sales forecasting”,Robotics and Computer-IntegratedManufacturing, Vol. 34, pp. 151-163.

Raun, J., Ahas, R. and Tiru, M. (2016), “Measuring tourism destinations using mobile tracking data”,
TourismManagemen, Vol. 57, pp. 202-212.

Mobile
devices’
bigdata

1995



Rundo, F., Trenta, F., di Stallo, A.L. and Battiato, S. (2019), “Machine learning for quantitative finance
applications: a survey”,Applied Sciences, Vol. 9 No. 24, p. 5574.

Scott, N., Van Niekerk, M. and De Martino, M. (2017), Knowledge Transfer to and within Tourism:
Academic, Industry and Government Bridges, Emerald Publishing, Bingley, Vol. 8.

Seyyedsalehi, S.Z. and Seyyedsalehi, S.A. (2015), “A fast and efficient pre-trainingmethod based on layer-by-
layermaximumdiscrimination for deep neural networks”,Neurocomputing, Vol. 168, pp. 669-680.

Shintate, T. and Pichl, L. (2019), “Trend prediction classification for high frequency bitcoin time series
with deep learning”, Journal of Risk and Financial Management, Vol. 12 No. 1, p. 17.

Shoval, N. and Ahas, R. (2016), “The use of tracking technologies in tourism research: the first decade”,
Tourism Geographies, Vol. 18 No. 5, pp. 587-606.

Shoval, N. and Isaacson, M. (2007), “Tracking tourists in the digital age”, Annals of Tourism Research,
Vol. 34 No. 1, pp. 141-159.

Smola, A.J. and Scholkopf, B. (2004), “A tutorial on support vector regression”, Statistics and
Computing, Vol. 14 No. 3, pp. 199-222.

Song, H. and Li, G. (2008), “Tourism demand modelling and forecasting – a review of recent research”,
TourismManagement, Vol. 29 No. 2, pp. 203-220.

Song, H., Qiu, R.T.R. and Park, J. (2019), “A review of research on tourism demand forecasting”,Annals
of Tourism Research, Vol. 75 No. September 2018, pp. 338-362.

Song, C., Qu, Z., Blumm, N. and Barab�asi, A.L. (2010), “Limits of predictability in human mobility”,
Science, Vol. 327 No. 5968, pp. 1018-1021.

Svetunkov, I. and Boylan, J.E. (2020), “State-space ARIMA for supply-chain forecasting”, International
Journal of Production Research, Vol. 58 No. 3, pp. 818-827.

Thushara, S.C., Su, J.J. and Bandara, J.S. (2019), “Forecasting international tourist arrivals in
formulating tourism strategies and planning: the case of Sri Lanka”, Cogent Economics and
Finance, Vol. 7 No. 1, p. 1699884.

Wang, D., Park, S. and Fesenmaier, D. (2012), “The role of smartphones in mediating the touristic
experience”, Journal of Travel Research, Vol. 51 No. 4, pp. 371-387.

Witt, S.F. and Witt, C.A. (1991), “Tourism forecasting: error magnitude, direction of change error and
trend change error”, Journal of Travel Research, Vol. 30 No. 2, pp. 26-33.

Xiang, Z., Tussyadiah, I. and Buhalis, D. (2015), “Smart destinations: foundations, analytics, and
applications”, Journal of DestinationMarketing andManagement, Vol. 4 No. 3, pp. 143-144.

Xia, J.C., Zeephongsekul, P. and Arrowsmith, C. (2009), “Modelling spatio-temporal movement of
tourists using finite Markov chains”, Mathematics and Computers in Simulation, Vol. 79 No. 5,
pp. 1544-1553.

Xia, J.C., Zeephongsekul, P. and Packer, D. (2011), “Spatial and temporal modelling of tourist
movements using Semi-Markov processes”,TourismManagement, Vol. 32 No. 4, pp. 844-851.

Xing, Y., Ban, X., Liu, X. and Shen, Q. (2019), “Large-scale traffic congestion prediction based on the
symmetric extreme learning machine cluster fast learning method”, Symmetry, Vol. 11 No. 6,
p. 730.

Xu, X., Law, R., Chen, W. and Tang, L. (2016), “Forecasting tourism demand by extracting fuzzy
Takagi–Sugeno rules from trained SVMs”, CAAI Transactions on Intelligence Technology, Vol. 1
No. 1, pp. 30-42.

Yin, T., Zhong, G., Zhang, J., He, S. and Ran, B. (2017), “A prediction model of bus arrival time at stops
with multi-routes”,Transportation Research Procedia, Vol. 25, pp. 4623-4636.

Zhang, G., Patuwo, B.E. and Hu, M.Y. (1998), “Forecasting with artificial neural networks: the state of
the art”, International Journal of Forecasting, Vol. 14 No. 1, pp. 35-62.

Zhang, B., Pu, Y., Wang, Y. and Li, J. (2019), “Forecasting hotel accommodation demand based on LSTM
model incorporating internet search index”, Sustainability, Vol. 11 No. 17, p. 4708.

IJCHM
33,6

1996



Zheng, W., Huang, X. and Li, Y. (2017), “Understanding the tourist mobility using GPS: where is the
next place?”,TourismManagement, Vol. 59, pp. 267-280.

Further reading
Bangwayo-Skeete, P.F. and Skeete, R.W. (2015), “Can Google data improve the forecasting performance

of tourist arrivals? Mixed-data sampling approach”,TourismManagement, Vol. 46, pp. 454-464.

Appendix. SVM

This model includes a training data set {(x1, y1), (x2, y2), . . ., (xn,yn)} with n inputs; y is the dependent
variable explained by the inputs x = {yt–1, . . ., yt–p}, which are lagged values of y. SVM model develops a
mapping f (x):ℜn!ℜ to fit input data into the so-called high dimensional feature spaceℜ:

f x;Wð Þ ¼ W 0 � f xð Þ þ b; (1)

where W is the weight parameters and f is a nonlinear transformation function. This procedure
transforms the non-linear input space into a high-dimensional linear feature space. In the
computation aspect, we can determine the unknown W by minimizing the sum of the loss function
loss() and a complexity term 1

2kwk2; thus, a convex optimization problem can be written as:

1
2 kWk2 þ loss

Xn
i¼1

g i þ g *
i

� � !
; (2)

subject to the following additional constraints:

yi � f x;Wð Þ#« þ g *
i ; (3)

f x;Wð Þ � yi # « þ g i; (4)

g i;g
*
i � 0: (5)

where g i;g
*
i are the slack variables used to cope with optimization problem’s infeasible constraints. «

is the tolerated error. By using the Lagrange approach, equations (2)-(5) can be expressed as:

L ¼ 1
2 kWk2 þ loss

Xn
i¼1

gn þ g *
n

� � !
�
Xn
i¼1

l i �« � g *
i þ yi � f x;Wð Þ

� �

�
Xn
i¼1

l*
i �« � g i � yi þ f x;Wð Þ� �

; (6)

where L is the Lagrangian function and l *
i ; l i > 0 are its multipliers.

ANN
The input hidden layer is modeled by summing the path of input weights times the input data and
adding the bias node (b). Thus, these functions can be expressed as:
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HI
j ¼ g x

0
wI
j þ bIj

� �
; (7)

where HI
j are the j-th hidden neuron’s input and the vector wI ¼ fwI

1; . . . ;w
I
j Þ captures the weights

that show the strength of the path between the hidden and input layers. g(·) is the hidden layer
logistic activation function. bIj is the bias term of the input layer. HI

j is transformed into output y,
through the output layer’s activation function. Thus, the model can be written as:

y_ t ¼ f HI
t w

o
j þ boj

� �
; (8)

where ŷ t is the estimated variable; the vector wo
j ¼ fwo

1; . . . ;w
o
j Þ represents the output weights

connecting hidden and output layers; boj is the bias term of the output layer; Finally, the output layer

activation function is f(·).
The ML protocol typically uses backpropagation to adjust the path weights and the node biases

to minimizing the difference between observed and estimated output that match the data. The loss
function can be formulated as follows:

Loss wI ;wo
� �

¼ 1
T

XT
t¼1

yt � y_ tjwI ;woÞ2
�

(9)

Thus, the optimal weights’ vectorw_ ¼ fw_ I
;w

_ oÞ is obtained as:
w_ ¼ argmin

wI ;wo
¼ loss wI ;wo

� �
(10)

RNN
Figure A1 shows an example of the architecture of the RNN.

The current state ht at timestamp t is computed considering the contemporary input xt and the
previously hidden state ht–1. Mathematically it can be expressed as:

ht ¼ fu Uxt þWht�1ð Þ (11)

ot ¼ fa Vhtð Þ (12)

where ot denotes the output at the timestamp t; fu and fa are sigmoid activation functions; and U,Ws

and V are the weight parameters. The sigmoid function is appropriate for non-linear data with high-
value variability and it is a frequently used ANN activation function (Claveria and Torra, 2014;
Poornima and Pushpalatha, 2019).

FigureA1.
Example of Recurrent
Neural Network’s
Architecture
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LSTM
Figure 2 illustrates the architecture of the hidden layer in the LSTM network (Figure A2).

ct denotes the memory cell at timestamp t that is used to replace the RNN’s hidden layer
neurons. At each timestamp, a few layers are used to regulate the information along with the
sequences and thereby capturing any long-term dependencies. To do so, the hidden layer ht is
updated considering the information from: input xt, hidden layer ht–1 and three gates (input, It; forget,
ft; and output, ot). These gates are represented as:

ft ¼ sigmoid Wf � xt � ht�1½ � þ bf
� �

; (13)

where sigmoid(·) is the activation function; [xt·ht–1] is the vector of input xt and hidden layer ht–1; whileWf

and bf represent, respectively, the weights’ matrix and the bias of the forget gate. Note that this forgets
gate determines the number of cell states from previous time ct–1, that are reserved for the cell state ct. A
zero weight would be assigned when the information is eliminated and one if the information is preserved.

The input gate determines how much of the current input xt is reserved into the cell state ct.
Thus, the input gate becomes:

It ¼ sigmoid WI � ht�1 � xt½ � þ bIð Þ; (14)

whereWI and bI are also the weights’matrix and bias of this gate. Then, the cell state can be updated
at timestamps t as:

~ct ¼ tanh Wc � ht�1 � xt½ � þ bcð Þ (15)

ct ¼ ft � ct�1 � It � ~ct; (16)

Similarly, Wc and bc correspond to the weights’ matrix and bias in the cell state. tanh(·) is an
activation hyperbolic tangent function used to rescale the logistic sigmoid. Finally, the output value
of the cell is defined as:

ot ¼ sigmoid Wo � ht�1 � xt½ � þ boð Þ; (17)

ht ¼ ot � tanh ctð Þ; (18)

whereWo is the weights’matrix and bo is the bias.

FigureA2.
Architecture of
LSTM network
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SSARIMA
The mathematical representation of the proposed SSARIMA is:

yt ¼ vt�1 þ « t;

vj;t ¼ f jvj;t�1 þ vjþ1;t�1 þ vKþ1;t�1 þ f j þ h j
� �

« t; for j¼ 1;

vj;t ¼ f jvj;t�1 þ vjþ1;t�1 þ f j þ h j
� �

« t; for 1 < j#K;

vKþ1;t ¼ vKþ1;t�1;

(19)

where vj,t is the j-th component of AR and MA terms and vKþ1,0 = a0 equation (22) then can be
written as:

yt ¼ x0vt�1 þ « t;
vt ¼ Fvt�1 þG« t;

(20)

where x is the measurement vector, F is a transition matrix and G is the persistence vector. These
three components can be expanded as:

F ¼

f 1 1 0 � � � 0 1
f 2 0 1 � � � 0 0
..
. ..

. ..
. . .

. ..
. ..

.

f K 0 0 � � � 0 0
0 0 0 � � � 0 1

0
BBBBB@

1
CCCCCA;x ¼

1
0
..
.

0
0

0
BBBBB@

1
CCCCCAG ¼

f 1 þ h 1
f 2 þ h 2

..

.

f K þ h k
0

0
BBBBB@

1
CCCCCA:; (21)

MCS
The EPA hypothesis for a given set of models M can be formulated as:

H0;M : E dij
� � ¼ 0 for all i; j ¼ 1; . . . ;m

Ha;M : E dij
� � 6¼ 0 for all i; j ¼ 1; . . . ;m;

(22)

Different criteria can be used to establish EPA. In this study, we use the “range” statistic:

TR ¼ max
i;j2M

jdijjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var
_

dij

� �r ; (23)

where dij ¼ m�1
Xm

t¼1
dij;t is the mean loss differential between each pair of forecasting models i and

j; dij,t captures the sample loss between these models at time t; and var
_

dij

� �
is the bootstrapped

variance estimate of this difference.
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