Search results

1 – 10 of 117
Article
Publication date: 14 November 2023

Muhammad Faisal, Iftikhar Ahmad and Abdur Rashid

The present study aims to encompass the bidirectional magnetized flowing of a hybrid-nanofluid over an unsteady stretching device with the inclusion of thermal radiation and…

Abstract

Purpose

The present study aims to encompass the bidirectional magnetized flowing of a hybrid-nanofluid over an unsteady stretching device with the inclusion of thermal radiation and entropy generation. Brick-shaped nanoparticles (zinc-oxide and ceria) are suspended in water, serving as the base-fluid to observe the performance of the hybrid mixture. The Maxwell thermal conductivity relation is employed to link the thermophysical attributes of the hybrid mixture with the host liquid. Additionally, a heat source/sink term is incorporated in the energy balance to enhance the impact of the investigation. Both prescribed-surface-temperature (PST) and prescribed-heat-flux (PHF) conditions are applied to inspect the thermal performance of the hybrid nanofluid.

Design/methodology/approach

The transport equations in Cartesian configuration are transformed into ordinary differential equations (ODEs), and an efficient method, namely the Keller-Box method (KBM), is utilized to solve the transformed system. Postprocessing is conducted to visually represent the velocity profile, thermal distribution, skin-friction coefficients, Bejan number, Nusselt number and entropy generation function against the variations of the involved parameters.

Findings

It is observed that more entropy is generated due to the increases in temperature difference and radiation parameters. The Bejan number initially declines but then improves with higher estimations of unsteadiness and Hartmann number. Overall, the thermal performance of the system is developed for the PST scenario than the PHF scenario for different estimations of the involved constraints.

Originality/value

To the best of the authors' knowledge, no investigation has been reported yet that explains the bidirectional flow of a CeO2-ZnO/water hybrid nanofluid with the combined effects of prescribed thermal aspects (PST and PHF) and entropy generation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 August 2022

Nargess Yousefi-Limaee, Behzad Shirkavand Hadavand and Zahra Rahmani

Methylene blue (MB) is classified as a cationic dye which is widely used as chemical indicator, coloring agent and biological stain. The discharge of this dye to the water streams…

Abstract

Purpose

Methylene blue (MB) is classified as a cationic dye which is widely used as chemical indicator, coloring agent and biological stain. The discharge of this dye to the water streams is harmful to the human beings. For this reason, this study investigated the removal of MB from aqueous solution by hydrogel nanocomposite.

Design/methodology/approach

In experimental part, at first, ultraviolet (UV)-curable hydrogel/chitosan nanocomposite, which improves its elasticity by urethane acrylate, was synthesized and characterized by FTIR and SEM analysis. Afterward, the synthesized hydrogel nanocomposite was applied for the removal of MB and the influence of operational condition including nanocomposite loading, dye concentration, contact time and pH of solution was specified. Moreover, isotherm studies as well as kinetics survey were performed.

Findings

Langmuir, Freundlich, Brunauer, Emmett and Teller and Tempkin adsorption isotherms were assessed for the analysis of experimental data indicating the Freundlich isotherm was the best fitted one. The adsorption kinetics data was examined indicating the adsorption kinetics appropriate to pseudo-second-order kinetics model.

Originality/value

The predominant water absorption property of the UV-curable hydrogel/chitosan nanocomposite to 8.5 steps and outstanding adsorption capacity for the elimination of MB on hydrogel nanocomposite subscribed that the synthesized hydrogel could be a favorable adsorbent for simultaneous absorption of water and removal of cationic dyes.

Details

Pigment & Resin Technology, vol. 52 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 October 2022

Antonella Estefania Bergesse, Alexis Rafael Velez, Liliana Cecilia Ryan and Valeria Nepote

The aim of this work was to evaluate the efficiency of subcritical conditions using different water–ethanol mixtures to recover antioxidant compounds from soybean seed coats…

Abstract

Purpose

The aim of this work was to evaluate the efficiency of subcritical conditions using different water–ethanol mixtures to recover antioxidant compounds from soybean seed coats (SSCs).

Design/methodology/approach

SSCs were subjected to high temperature and pressure conditions, using ethanol–water mixtures as extractive solvent, to obtain phenolic and flavonoid compounds with antioxidant activity. A mathematical model, namely one-site desorption kinetic model, was used to describe the extraction kinetics.

Findings

Temperature, solvent mass flow rate and solvent composition were studied, and the best extraction conditions were defined by a screening design. The maximum concentration of phenolics was obtained at 220 °C, 50% of ethanol and 2.5 g/min of solvent mass flow rate and a high antioxidant capacity toward different techniques was achieved. The one-site desorption kinetic model showed that before 30 min under optimal conditions, more than 90% of phenolics and flavonoids were recovered, a shorter extraction time than the commonly used at normal pressure and room temperature.

Originality/value

The seed coat is a major by-product of soybean processing, and it only markets as a low value ruminant feed. To date, there are no reports on the extract phenolics from SSCs by means of this methodology. The extraction technique described in this study provides a potential alternative for extraction of bioactive compounds from SSCs. This study contributes to adding value to this industrial waste and, ultimately, to optimize the postharvest production chain of soybean grains.

Details

British Food Journal, vol. 125 no. 6
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 11 April 2023

Yulei Yang, Jimin Xu and Yi Liang

Quantitative fretting wear prediction is of practical significance for industrial components. This study aims to establish a fretting wear model considering the formation of…

Abstract

Purpose

Quantitative fretting wear prediction is of practical significance for industrial components. This study aims to establish a fretting wear model considering the formation of tribolayers and provide better fretting wear prediction.

Design/methodology/approach

Based on the characteristics for the formation of tribolayers, the ratio of fretting amplitude to nominal contact area length in the fretting direction is used to characterize their formation and contribution to the wear volume. The wear volume is then associated with the product of the friction energy and the ratio of fretting amplitude to nominal contact area length.

Findings

Better prediction in the wear volume can be achieved with the proposed fretting wear model by taking the formation of tribolayers into consideration.

Originality/value

The contribution of the formation of tribolayers to the wear volume is considered in the model and better prediction can be achieved.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2023-0004/

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 September 2023

Nikesh Chowrasia, Subramani S.N., Harish Pothukuchi and B.S.V. Patnaik

Subcooled flow boiling phenomenon is characterized by coolant phase change in the vicinity of the heated wall. Although coolant phase change from liquid to vapour phase…

Abstract

Purpose

Subcooled flow boiling phenomenon is characterized by coolant phase change in the vicinity of the heated wall. Although coolant phase change from liquid to vapour phase significantly enhances the heat transfer coefficient due to latent heat of vaporization, eventually the formed vapor bubbles may coalesce and deteriorate the heat transfer from the heated wall to the liquid phase. Due to the poor heat transfer characteristics of the vapour phase, the heat transfer rate drastically reduces when it reaches a specific value of wall heat flux. Such a threshold value is identified as critical heat flux (CHF), and the phenomenon is known as departure from nucleate boiling (DNB). An accurate prediction of CHF and its location is critical to the safe operation of nuclear reactors. Therefore, the present study aims at the prediction of DNB type CHF in a hexagonal sub-assembly.

Design/methodology/approach

Computational fluid dynamics (CFD) simulations are performed to predict DNB in a hexagonal sub-assembly. The methodology uses an Eulerian–Eulerian multiphase flow (EEMF) model in conjunction with multiple size group (MuSiG) model. The breakup and coalescence of vapour bubbles are accounted using a population balance approach.

Findings

Bubble departure diameter parameters in EEMF framework are recalibrated to simulate the near atmospheric pressure conditions. The predictions from the modified correlation for bubble departure diameter are found to be in good agreement against the experimental data. The simulations are further extended to investigate the influence of blockage (b) on DNB type CHF at low operating pressure conditions. Larger size vapour bubbles are observed to move away from the corner sub-channel region due to the presence of blockage. Corner sub-channels were found to be more prone to experience DNB type CHF compared to the interior and edge sub-channels.

Practical implications

An accurate prediction of CHF and its location is critical to the safe operation of nuclear reactors. Moreover, a wide spectrum of heat transfer equipment of engineering interest will be benefited by an accurate prediction of wall characteristics using breakup and coalescence-based models as described in the present study.

Originality/value

Simulations are performed to predict DNB type CHF. The EEMF and wall heat flux partition model framework coupled with the MuSiG model is novel, and a detailed variation of the coolant velocity, temperature and vapour volume fraction in a hexagonal sub-assembly was obtained. The present CFD model framework was observed to predict the onset of vapour volume fraction and DNB type CHF. Simulations are further extended to predict CHF in a hexagonal sub-assembly under the influence of blockage. For all the values of blockage, the vapour volume fraction is found to be higher in the corner region, and thus the corner sub-channel experiences CHF. Although DNB type CHF is observed in corner sub-channel, it is noticed that the presence of blockage in the interior sub-channel promotes the coolant mixing and results in higher values of CHF in the corner sub-channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 14 December 2023

Nausheen Bibi Jaffur, Pratima Jeetah and Gopalakrishnan Kumar

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental…

Abstract

The increasing accumulation of synthetic plastic waste in oceans and landfills, along with the depletion of non-renewable fossil-based resources, has sparked environmental concerns and prompted the search for environmentally friendly alternatives. Biodegradable plastics derived from lignocellulosic materials are emerging as substitutes for synthetic plastics, offering significant potential to reduce landfill stress and minimise environmental impacts. This study highlights a sustainable and cost-effective solution by utilising agricultural residues and invasive plant materials as carbon substrates for the production of biopolymers, particularly polyhydroxybutyrate (PHB), through microbiological processes. Locally sourced residual materials were preferred to reduce transportation costs and ensure accessibility. The selection of suitable residue streams was based on various criteria, including strength properties, cellulose content, low ash and lignin content, affordability, non-toxicity, biocompatibility, shelf-life, mechanical and physical properties, short maturation period, antibacterial properties and compatibility with global food security. Life cycle assessments confirm that PHB dramatically lowers CO2 emissions compared to traditional plastics, while the growing use of lignocellulosic biomass in biopolymeric applications offers renewable and readily available resources. Governments worldwide are increasingly inclined to develop comprehensive bioeconomy policies and specialised bioplastics initiatives, driven by customer acceptability and the rising demand for environmentally friendly solutions. The implications of climate change, price volatility in fossil materials, and the imperative to reduce dependence on fossil resources further contribute to the desirability of biopolymers. The study involves fermentation, turbidity measurements, extraction and purification of PHB, and the manufacturing and testing of composite biopolymers using various physical, mechanical and chemical tests.

Details

Innovation, Social Responsibility and Sustainability
Type: Book
ISBN: 978-1-83797-462-7

Keywords

Article
Publication date: 6 July 2023

K. Thirumalaisamy and A. Subramanyam Reddy

The analysis of fluid flow and thermal transport performance inside the cavity has found numerous applications in various engineering fields, such as nuclear reactors and solar…

Abstract

Purpose

The analysis of fluid flow and thermal transport performance inside the cavity has found numerous applications in various engineering fields, such as nuclear reactors and solar collectors. Nowadays, researchers are concentrating on improving heat transfer by using ternary nanofluids. With this motivation, the present study analyzes the natural convective flow and heat transfer efficiency of ternary nanofluids in different types of porous square cavities.

Design/methodology/approach

The cavity inclination angle is fixed ω = 0 in case (I) and ω=π4 in case (II). The traditional fluid is water, and Fe3O4+MWCNT+Cu/H2O is treated as a working fluid. Ternary nanofluid's thermophysical properties are considered, according to the Tiwari–Das model. The marker-and-cell numerical scheme is adopted to solve the transformed dimensionless mathematical model with associated initial–boundary conditions.

Findings

The average heat transfer rate is computed for four combinations of ternary nanofluids: Fe3O4(25%)+MWCNT(25%)+Cu(50%),Fe3O4(50%)+MWCNT(25%)+Cu(25%),Fe3O4(33.3%)+MWCNT(33.3%)+Cu(33.3%) and Fe3O4(25%)+MWCNT(50%)+Cu(25%) under the influence of various physical factors such as volume fraction of nanoparticles, inclined magnetic field, cavity inclination angle, porous medium, internal heat generation/absorption and thermal radiation. The transport phenomena within the square cavity are graphically displayed via streamlines, isotherms, local and average Nusselt number profiles with adequate physical interpretations.

Practical implications

The purpose of this study is to determine whether the ternary nanofluids may be used to achieve the high thermal transmission in nuclear power systems, generators and electronic device applications.

Social implications

The current analysis is useful to improve the thermal features of nuclear reactors, solar collectors, energy storage and hybrid fuel cells.

Originality/value

To the best of the authors’ knowledge, no research has been carried out related to the magneto-hydrodynamic natural convective Fe3O4+MWCNT+Cu/H2O ternary nanofluid flow and heat transmission filled in porous square cavities with an inclined cavity angle. The computational outcomes revealed that the average heat transfer depends not only on the nanoparticle’s volume concentration but also on the existence of heat source and sink.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 March 2024

Kalidas Das and Pinaki Ranjan Duari

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced…

24

Abstract

Purpose

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced magnetic field and temperature have been determined using parametric analysis.

Design/methodology/approach

Ternary hybrid nanofluids has outstanding hydrothermal performance compared to classical mono nanofluids and hybrid nanofluids owing to the presence of triple tiny metallic particles. Ternary hybrid nanofluids are considered as most promising candidates in solar energy, heat exchangers, electronics cooling, automotive cooling, nuclear reactors, automobile, aerospace, biomedical devices, food processing etc. In this work, a ternary hybrid nanofluid flow that contains metallic nanoparticles over a wedge under the prevalence of solar radiating heat, induced magnetic field and the shape factor of nanoparticles is considered. A ternary hybrid nanofluid is synthesized by dispersing iron oxide (Fe3O4), silver (Ag) and magnesium oxide (MgO) nanoparticles in a water (H2O) base fluid. By employing similarity transformations, we can convert the governing equations into ordinary differential equations and then solve numerically by using the Runge–Kutta–Fehlberg approach.

Findings

There is no fund for the research work.

Social implications

This kind of study may be used to improve the performance of solar collectors, solar energy and solar cells.

Originality/value

This investigation unfolds the hydrothermal changes of radiative water-based Fe3O4-Ag-MgO-H2O ternary hybrid nanofluidic transport past a static and moving wedge in the presence of solar radiating heating and induced magnetic fields. The shape factor of nanoparticles has been considered in this study.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 June 2023

Aishwarya Narang, Ravi Kumar, Amit Kumar Dhiman, Ravi Shankar Pandey and Pavan Kumar Sharma

This study describes a series of experiments investigating the upper hot layer temperature profile in a confined space under different ventilation conditions for…

Abstract

Purpose

This study describes a series of experiments investigating the upper hot layer temperature profile in a confined space under different ventilation conditions for porosity-controlled wood crib fires for pre-flashover conditions.

Design/methodology/approach

Full-scale compartment (4 m × 4 m × 4 m) experiments were carried out for four-door openings, i.e. 100%, 75%, 50% and 25% of the total vent area (2 m × 1 m) with the wood crib as a fuel load. The temperature of the upper hot smoke layers of the compartment was recorded with the help of four layers of thermocouples for varying vent areas.

Findings

The effect of ventilation on the properties, i.e. mass loss rate, enclosure temperature, heat release rate and carbon monoxide (CO) gas concentration, has been measured and analyzed. The effect of ventilation on heat flux and flame temperature has also been studied. Compartment gas temperature has been examined by five wood crib burning stages: Ignition, growth, steady burning, recess and collapse.

Originality/value

Findings demonstrate that the influence of vent openings varies for the burning parameters and upper layer temperature of the compartment. The current results are beneficial in analyzing thermal risks concerning compartment fire and fire safety engineering projects.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 November 2023

Oktay Çiçek, A. Filiz Baytaş and A. Cihat Baytaş

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow…

Abstract

Purpose

This study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes–Fe3O4/water hybrid nanofluid flow in a lid-driven square enclosure with heat generation in the presence of a porous layer on inner surfaces, considering local thermal non-equilibrium (LTNE) approach and the non-Darcy flow model.

Design/methodology/approach

The dimensionless governing equations for hybrid nanofluid and solid phases are solved by applying the finite volume method and semi-implicit method for pressure-linked equations algorithm.

Findings

The roles of the internal heat generation in the porous layer, LTNE model and nanoparticles volume fraction on mixed convection phenomenon and entropy generation are introduced for lid-driven cavity hybrid nanofluid flow. Based on the investigation of entropy generation and heat transfer, the minimum total entropy generation and average Nusselt numbers are found at 1 ≤ Ri ≤ 10 where the effect of the forced and free convection flow directions being opposite each other is very significant. When considering various nanoparticle volume fractions, it becomes evident that the minimum entropy generation occurs in the case of φ = 0.1%. The outcomes of LTNE number reveal the operating parameters in which thermal equilibrium occurs between hybrid nanofluid and solid phases.

Originality/value

The analysis of entropy generation under various shear and buoyancy forces plays a significant role in the suitable thermal design and optimization of mixed convective heat transfer applications. This research significantly contributes to the optimization of design and the advancement of innovative solutions across diverse engineering disciplines, such as packed-bed thermal energy storage and thermal insulation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 117