Search results

1 – 10 of over 4000
Article
Publication date: 11 January 2022

Ilesanmi Daniyan, Khumbulani Mpofu and Samuel Nwankwo

The need to examine the integrity of infrastructure in the rail industry in order to improve its reliability and reduce the chances of breakdown due to defects has brought about…

Abstract

Purpose

The need to examine the integrity of infrastructure in the rail industry in order to improve its reliability and reduce the chances of breakdown due to defects has brought about development of an inspection and diagnostic robot.

Design/methodology/approach

In this study, an inspection robot was designed for detecting crack, corrosion, missing clips and wear on rail track facilities. The robot is designed to use infrared and ultrasonic sensors for obstacles avoidance and crack detection, two 3D-profilometer for wear detection as well as cameras with high resolution to capture real time images and colour sensors for corrosion detection. The robot is also designed with cameras placed in front of it with colour sensors at each side to assist in the detection of corrosion in the rail track. The image processing capability of the robot will permit the analysis of the type and depth of the crack and corrosion captured in the track. The computer aided design and modeling of the robot was carried out using the Solidworks software version 2018 while the simulation of the proposed system was carried out in the MATLAB 2020b environment.

Findings

The results obtained present three frameworks for wear, corrosion and missing clips as well as crack detection. In addition, the design data for the development of the integrated robotic system is also presented in the work. The confusion matrix resulting from the simulation of the proposed system indicates significant sensitivity and accuracy of the system to the presence and detection of fault respectively. Hence, the work provides a design framework for detecting and analysing the presence of defects on the rail track.

Practical implications

The development and the implementation of the designed robot will bring about a more proactive way to monitor rail track conditions and detect rail track defects so that effort can be geared towards its restoration before it becomes a major problem thus increasing the rail network capacity and availability.

Originality/value

The novelty of this work is based on the fact that the system is designed to work autonomously to avoid obstacles and check for cracks, missing clips, wear and corrosion in the rail tracks with a system of integrated and coordinated components.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 3
Type: Research Article
ISSN: 0265-671X

Keywords

Book part
Publication date: 8 August 2022

Louis Le Pen and William Powrie

The railway track system is the platform by which loads from moving trains are transferred to the underlying soil or supporting infrastructure such as bridges. The most common

Abstract

The railway track system is the platform by which loads from moving trains are transferred to the underlying soil or supporting infrastructure such as bridges. The most common type of railway track system is ballasted track, which has been in use for over a century. Ballasted track has proved versatile. It can be constructed using locally available materials and with modifications to the rails and sleepers, crossings transferring trains from one route to another can be created. The structure of a ballasted track system consists of two main parts. The upper portion, termed the superstructure, comprises the rails, fastenings and sleepers. It is formed of components whose shape, stiffness and strength are designed and closely controlled. Below the superstructure is the substructure, which comprises the ballast and sub-ballast. Although the materials used in the substructure may have been specified, their engineering properties and geometric placement are less well controlled. In this chapter, we will explore how a typical ballasted track system transfers load to the ground and the ways in which the track form deteriorates, requiring maintenance and eventually renewal.

Details

Sustainable Railway Engineering and Operations
Type: Book
ISBN: 978-1-83909-589-4

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 30 September 2013

Upamanyu Banerjee

With an eye to prevent derailment of high-speed trains, vis-à-vis unwarranted loss of lives and property, this paper aims to develop a formalism of designing a suitable control…

Abstract

Purpose

With an eye to prevent derailment of high-speed trains, vis-à-vis unwarranted loss of lives and property, this paper aims to develop a formalism of designing a suitable control system with embedded decision support system.

Design/methodology/approach

A model of rolling contact fatigue (RCF) crack propagation in railway tracks is designed, simulating the alarming stress intensity factor around the advancing fatigue cracks. COMSOL multi-physics software is employed to design the RCF crack monitoring system with acoustic emission (AE) count signals, describing the damage threshold of railway tracks.

Findings

Simulation experiment on stress intensity factor for cracks in real life rail sections has enabled to describe the maximum working stress; it has been noticed that the threshold value of stress intensity factor (∼ 41 MPa m1/2) for the onset of unstable crack propagation is reached at a fatigue crack length of 11.5 mm. It is further noticed that the observed AE count at a particular instant of time in a specific location of railway track is a true indication of the vulnerability of rail failures.

Originality/value

The proposed model, a completely new of its kind, bears a high socio-technological value as it entails the design of an intelligent control system to prevent train accidents.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Abstract

Details

Chinese Railways in the Era of High-Speed
Type: Book
ISBN: 978-1-78441-984-4

Article
Publication date: 15 November 2023

Xiaoxue Liu, Yuchen Liu, Youwei Zhang and Hanfei Guo

According to relevant research, non-uniform speed has a significant impact on the vehicle-track systems. Up to now, research work on it is still very limited. In this paper, the…

Abstract

Purpose

According to relevant research, non-uniform speed has a significant impact on the vehicle-track systems. Up to now, research work on it is still very limited. In this paper, the PEM is adopted to further transform it into a deterministic process to solve the vehicle’s problem of running at a non-uniform speed.

Design/methodology/approach

The multi-body vehicle model has 10 degrees of freedom and the track is regarded as a finite long beam supported by lumped sleepers and ballast blocks. They are connected via linear Hertz springs. The vertical track irregularity is a Gaussian stationary process in the space domain. It is transformed into a uniformly modulated nonstationary random process in the time domain with respect to the non-uniform vehicle speed. By solving the equation of motion of the coupled vehicle-track system with the pseudo-excitation method, the pseudo-response and consequently the power spectral density and the standard deviation of the structural response can be obtained.

Findings

Two kinds of vehicle braking programs are taken in the numerical example and some beneficial conclusions are drawn.

Originality/value

The pseudo-excitation method (PEM) was used to perform the random vibration analysis of a coupled non-uniform speed vehicle-track system. Transforming the track irregularity into a uniformly modulated nonstationary random process in time domain with respect to the non-uniform vehicle speed was undertaken. The pseudo-response of the coupled system is solved by applying the Newmark algorithm with constant space integral steps. The random vibration transfer mechanism of the coupled system is fully discussed.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 December 2023

Zhaoyang Wang, Bing Wu, Jiaqing Huang, Yuqi Yang and Guangwen Xiao

The purpose of this study is to develop a transient wheel–rail rolling contact model to primarily investigate the rail damage under wet condition when the train passes through the…

Abstract

Purpose

The purpose of this study is to develop a transient wheel–rail rolling contact model to primarily investigate the rail damage under wet condition when the train passes through the welded joints.

Design/methodology/approach

The impact force induced by welded joints is obtained through vehicle–track coupling dynamics. The normal and tangential wheel–rail contact pressures were solved by elastohydrodynamic lubrication (EHL) theory and simplified third-body layer theory, respectively. Then, the obtained tangential pressure and normal pressure were applied to the finite element model as moving loads, simulating cyclic loading. Finally, the shakedown map and critical plane method were used to predict rolling contact fatigue (RCF) and the initiation of fatigue cracks.

Findings

The results indicate that RCF will occur and fatigue cracks are more prone to appear on the subsurface of the rail, specifically around 2.7 mm below the rail surface in the vicinity of the welded joint and its heat-affected zone.

Originality/value

The cosimulation of numerical model and finite element model was implemented. The influence of surface roughness and fluids was considered. In this model, the normal and tangential wheel–rail contact pressure, the stress and strain and the rail fatigue cracks were obtained under a rail-welded joint excitation.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 August 2001

Patric Waara

Since the middle of the 1970s, lubrication of the high rail flange has been used to reduce wear rates. Field tests have been taking place since 1997 to evaluate the differences in…

Abstract

Since the middle of the 1970s, lubrication of the high rail flange has been used to reduce wear rates. Field tests have been taking place since 1997 to evaluate the differences in wear characteristics between mineral oil based grease and new environmentally adapted greases. The field tests have also investigated whether the addition of graphite contributed to reduced flange wear. The wear reducing effect of trackside lubrication as a function of distance from point of application of the grease was also investigated. The field tests showed that environmentally adapted greases can be used without risk of increased rail wear and that the addition of solid lubricants, such as graphite, has no significant effect on the rate of wear. The highest wear rates were found during winter months when active lubrication stops due to problems associated with the sub‐zero temperatures common in northern Sweden. Year‐round lubrication would be expected to decrease wear rates significantly.

Details

Industrial Lubrication and Tribology, vol. 53 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Abstract

Details

Chinese Railways in the Era of High-Speed
Type: Book
ISBN: 978-1-78441-984-4

Article
Publication date: 2 January 2018

Hanhua Zhang, Jun Li, Jun Zou, Zhixin Wang and Jin Yang

The track impedance is one of the most important parameters in designing the track circuit which is widely used in the railway signal control system to detect the presence of a…

Abstract

Purpose

The track impedance is one of the most important parameters in designing the track circuit which is widely used in the railway signal control system to detect the presence of a train. This paper aims to calculate the ballastless track impedance by taking account of the influence of reinforcement bars.

Design/methodology/approach

This paper proposes a two-step decomposition approach to calculate the ballastless track impedance. The basic idea is evaluating the track impedance without the reinforcement bars by using two-dimensional (2D) finite element method (FEM), and the incremental impedance, because of the reinforcement bar, is calculated by the partial element equivalent circuit (PEEC) method.

Findings

The numerical examples show that the proposed approach can guarantee the accuracy and largely reduce the computing time, at least 20 times, compared with the direct three-dimensional (3D) FEM method.

Research limitations/implications

The study provides a fast approach to calculate the ballastless track impedance. However, compared with the 3D FEM method, the results are less accurate because of the approximation and assumption adopted in the method. A future study should pay more attention to improve accuracy of the model.

Originality/value

A fast approach is proposed to calculate the ballastless track impedance taking account of the influence of the reinforcement bars. The computing time can be largely reduced by using the method. With the proposed approach, the influence of insulation of the reinforcement bars on track impedance can be analyzed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 4000