Search results

1 – 10 of 176
Article
Publication date: 21 December 2023

Ahmed Farouk Kineber, Ayodeji Emmanuel Oke, Ali Hassan Ali, Oluwaseun Dosumu, Kayode Fakunle and Oludolapo Ibrahim Olanrewaju

This study aims to explore the critical application areas of radio frequency identification (RFID) technology for sustainable buildings.

Abstract

Purpose

This study aims to explore the critical application areas of radio frequency identification (RFID) technology for sustainable buildings.

Design/methodology/approach

The quantitative research approach was adopted through a structured questionnaire administered to relevant stakeholders of construction projects. The data collected were analysed with the exploratory factor analysis, relative importance index (RII) and fuzzy synthetic evaluation (FSE).

Findings

The study’s results have categorised the crucial areas of application where construction industry stakeholders should focus their attention. These areas are divided into four categories: management technologies, production technologies, sensing technologies and monitoring technologies. The findings from the FSE indicate that monitoring technologies represent the most significant category, whereas management technologies rank as the least significant. Moreover, the RII analysis highlights that tools management stands out as the most important application of RFID, while dispute resolution emerges as the least significant RFID application.

Practical implications

The study establishes the core areas of RFID application and their benefits to sustainable buildings. Consequently, it helps stakeholders (consultants, clients and contractors) to examine the RFID application areas and make informed decision on sustainable construction. Furthermore, it provides systematic proof that can aid the implementation of RFID in developing countries.

Originality/value

The study provides an insight into the possible application areas and benefits of RFID technology in the construction industry of developing countries. It also developed a conceptual frame for the critical application areas of RFID technology in the construction industry of developing countries.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 January 2024

Caroline Silva Araújo, Emerson de Andrade Marques Ferreira and Dayana Bastos Costa

Tracking physical resources at the construction site can generate information to support effective decision-making and building production control. However, the methods for…

Abstract

Purpose

Tracking physical resources at the construction site can generate information to support effective decision-making and building production control. However, the methods for conventional tracking usually offer low reliability. This study aims to propose the integrated Smart Twins 4.0 to track and manage metallic formworks used in cast-in-place concrete wall systems using internet of things (IoT) (operationalized by radio frequency identification [RFID]) and building information modeling (BIM), focusing on increasing quality and productivity.

Design/methodology/approach

Design science research is the research approach, including an exploratory study to map the constructive system, the integrated system development, an on-site pilot implementation in a residential project and a performance evaluation based on acquired data and the perception of the project’s production team.

Findings

In all rounds of requests, Smart Twins 4.0 registered and presented the status from the formworks and the work progress of buildings in complete correspondence with the physical progress providing information to support decision-making during operation. Moreover, analyses of the system infrastructure and implementation details can drive researchers regarding future IoT and BIM implementation in real construction sites.

Originality/value

The primary contribution is the system proposal, centralized into a mobile app that contains a Web-based virtual model to receive data in real time during construction phases and solve a real problem. The paper describes Smart Twins 4.0 development and its requirements for tracking physical resources considering theoretical and practical previous research regarding RFID, IoT and BIM.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 26 December 2023

Farshad Peiman, Mohammad Khalilzadeh, Nasser Shahsavari-Pour and Mehdi Ravanshadnia

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the…

Abstract

Purpose

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the accuracy and actualization of predicted values. This study primarily aimed to examine natural gradient boosting (NGBoost-2020) with the classification and regression trees (CART) base model (base learner). To the best of the authors' knowledge, this concept has never been applied to EVM AD forecasting problem. Consequently, the authors compared this method to the single K-nearest neighbor (KNN) method, the ensemble method of extreme gradient boosting (XGBoost-2016) with the CART base model and the optimal equation of EVM, the earned schedule (ES) equation with the performance factor equal to 1 (ES1). The paper also sought to determine the extent to which the World Bank's two legal factors affect countries and how the two legal causes of delay (related to institutional flaws) influence AD prediction models.

Design/methodology/approach

In this paper, data from 30 construction projects of various building types in Iran, Pakistan, India, Turkey, Malaysia and Nigeria (due to the high number of delayed projects and the detrimental effects of these delays in these countries) were used to develop three models. The target variable of the models was a dimensionless output, the ratio of estimated duration to completion (ETC(t)) to planned duration (PD). Furthermore, 426 tracking periods were used to build the three models, with 353 samples and 23 projects in the training set, 73 patterns (17% of the total) and six projects (21% of the total) in the testing set. Furthermore, 17 dimensionless input variables were used, including ten variables based on the main variables and performance indices of EVM and several other variables detailed in the study. The three models were subsequently created using Python and several GitHub-hosted codes.

Findings

For the testing set of the optimal model (NGBoost), the better percentage mean (better%) of the prediction error (based on projects with a lower error percentage) of the NGBoost compared to two KNN and ES1 single models, as well as the total mean absolute percentage error (MAPE) and mean lags (MeLa) (indicating model stability) were 100, 83.33, 5.62 and 3.17%, respectively. Notably, the total MAPE and MeLa for the NGBoost model testing set, which had ten EVM-based input variables, were 6.74 and 5.20%, respectively. The ensemble artificial intelligence (AI) models exhibited a much lower MAPE than ES1. Additionally, ES1 was less stable in prediction than NGBoost. The possibility of excessive and unusual MAPE and MeLa values occurred only in the two single models. However, on some data sets, ES1 outperformed AI models. NGBoost also outperformed other models, especially single models for most developing countries, and was more accurate than previously presented optimized models. In addition, sensitivity analysis was conducted on the NGBoost predicted outputs of 30 projects using the SHapley Additive exPlanations (SHAP) method. All variables demonstrated an effect on ETC(t)/PD. The results revealed that the most influential input variables in order of importance were actual time (AT) to PD, regulatory quality (RQ), earned duration (ED) to PD, schedule cost index (SCI), planned complete percentage, rule of law (RL), actual complete percentage (ACP) and ETC(t) of the ES optimal equation to PD. The probabilistic hybrid model was selected based on the outputs predicted by the NGBoost and XGBoost models and the MAPE values from three AI models. The 95% prediction interval of the NGBoost–XGBoost model revealed that 96.10 and 98.60% of the actual output values of the testing and training sets are within this interval, respectively.

Research limitations/implications

Due to the use of projects performed in different countries, it was not possible to distribute the questionnaire to the managers and stakeholders of 30 projects in six developing countries. Due to the low number of EVM-based projects in various references, it was unfeasible to utilize other types of projects. Future prospects include evaluating the accuracy and stability of NGBoost for timely and non-fluctuating projects (mostly in developed countries), considering a greater number of legal/institutional variables as input, using legal/institutional/internal/inflation inputs for complex projects with extremely high uncertainty (such as bridge and road construction) and integrating these inputs and NGBoost with new technologies (such as blockchain, radio frequency identification (RFID) systems, building information modeling (BIM) and Internet of things (IoT)).

Practical implications

The legal/intuitive recommendations made to governments are strict control of prices, adequate supervision, removal of additional rules, removal of unfair regulations, clarification of the future trend of a law change, strict monitoring of property rights, simplification of the processes for obtaining permits and elimination of unnecessary changes particularly in developing countries and at the onset of irregular projects with limited information and numerous uncertainties. Furthermore, the managers and stakeholders of this group of projects were informed of the significance of seven construction variables (institutional/legal external risks, internal factors and inflation) at an early stage, using time series (dynamic) models to predict AD, accurate calculation of progress percentage variables, the effectiveness of building type in non-residential projects, regular updating inflation during implementation, effectiveness of employer type in the early stage of public projects in addition to the late stage of private projects, and allocating reserve duration (buffer) in order to respond to institutional/legal risks.

Originality/value

Ensemble methods were optimized in 70% of references. To the authors' knowledge, NGBoost from the set of ensemble methods was not used to estimate construction project duration and delays. NGBoost is an effective method for considering uncertainties in irregular projects and is often implemented in developing countries. Furthermore, AD estimation models do fail to incorporate RQ and RL from the World Bank's worldwide governance indicators (WGI) as risk-based inputs. In addition, the various WGI, EVM and inflation variables are not combined with substantial degrees of delay institutional risks as inputs. Consequently, due to the existence of critical and complex risks in different countries, it is vital to consider legal and institutional factors. This is especially recommended if an in-depth, accurate and reality-based method like SHAP is used for analysis.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 March 2024

Gaurav Kumar Badhotiya, Anand Gurumurthy, Yogesh Marawar and Gunjan Soni

Lean manufacturing (LM) concepts have been widely adopted in diverse industrial sectors. However, no literature review focusing on case studies describing LM implementation is…

Abstract

Purpose

Lean manufacturing (LM) concepts have been widely adopted in diverse industrial sectors. However, no literature review focusing on case studies describing LM implementation is available. Case studies represent the actual implementation and provide secondary data for further analysis. This study aims to review the same to understand the pathways of LM implementation. In addition, it aims to analyse other related review questions, such as how implementing LM impacts manufacturing capabilities and the maturity level of manufacturing organisations that implemented LM, to name a few.

Design/methodology/approach

A literature review of case studies that discuss the implementation of LM during the last decade (from 2010 to 2020) is carried out. These studies were synthesised, and content analyses were performed to reveal critical insights.

Findings

The implementation pattern of LM significantly varies across manufacturing organisations. The findings show simultaneous improvement in manufacturing capabilities. Towards the end of the last decade, organisations implemented LM with radio frequency identification, e-kanban, simulation, etc.

Originality/value

Reviewing the case studies documenting LM implementation to comprehend the various nuances is a novel attempt. Furthermore, potential future research directions are identified for advancing the research in the domain of LM.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 29 August 2023

Ayesh Udayanga Nelumdeniya, B.A.K.S. Perera and K.D.M. Gimhani

The purpose of this study is to investigate the usage of digital technologies (DTs) in improving the mental health of workers on construction sites.

Abstract

Purpose

The purpose of this study is to investigate the usage of digital technologies (DTs) in improving the mental health of workers on construction sites.

Design/methodology/approach

A mixed research approach was used in the study, which comprised a questionnaire survey and two phases of semi-structured interviews. Purposive sampling was used to determine the interviewees and respondents of the questionnaire survey. Weighted mean rating (WMR) and manual content analysis were used to rank and evaluate the collected data.

Findings

The findings of this study revealed bipolar disorder, anxiety disorders, attention-deficit/hyperactivity disorder, obsessive-compulsive disorder, work-related stress and depression as the six most significant mental disorders (MDs) among the construction workforce and 30 causes for them. Moreover, 27 symptoms were related to the six most significant MDs, and sweating was the most significant symptom among them. Despite that, 16 DTs were found to be suitable in mitigating the causes for the most significant MDs.

Originality/value

There are numerous studies conducted on the application of DTs to construction operations. However, insufficient studies have been conducted focusing on the application of DTs in improving the mental health of workers at construction sites. This study can thus influence the use of DTs for tackling the common causes for MDs by bringing a new paradigm to the construction industry.

Details

Construction Innovation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 2 January 2024

Stephan M. Wagner, M. Ramkumar, Gopal Kumar and Tobias Schoenherr

In the aftermath of disasters, humanitarian actors need to coordinate their activities based on accurate information about the disaster site, its surrounding environment, the…

Abstract

Purpose

In the aftermath of disasters, humanitarian actors need to coordinate their activities based on accurate information about the disaster site, its surrounding environment, the victims and survivors and the supply of and demand for relief supplies. In this study, the authors examine the characteristics of radio frequency identification (RFID) technology and those of disaster relief operations to achieve information visibility and actor coordination for effective and efficient humanitarian relief operations.

Design/methodology/approach

Building on the contingent resource-based view (CRBV), the authors present a model of task-technology fit (TTF) that explains how the use of RFID can improve visibility and coordination. Survey data were collected from humanitarian practitioners in India, and partial least squares (PLS) analysis was used to analyze the model.

Findings

The characteristics of both RFID technology and disaster relief operations significantly influence TTF, and TTF predicts RFID usage in disaster relief operations, providing visibility and coordination. TTF is also a mediator between the characteristics of RFID technology and disaster relief operations and between visibility and coordination.

Social implications

The many recent humanitarian disasters have demonstrated the critical importance of effective and efficient humanitarian supply chain and logistics strategies and operations in assisting disaster-affected populations. The active and appropriate use of technology, including RFID, can help make disaster response more effective and efficient.

Originality/value

Humanitarian actors value RFID technology because of its ability to improve the visibility and coordination of relief operations. This study brings a new perspective to the benefits of RFID technology and sheds light on its antecedents. The study thus expands the understanding of technology in humanitarian operations.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 10 July 2023

Md. Mehrab Hossain, Shakil Ahmed, S.M. Asif Anam, Irmatova Aziza Baxramovna, Tamanna Islam Meem, Md. Habibur Rahman Sobuz and Iffat Haq

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be…

Abstract

Purpose

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be prone to errors and result in numerous fatalities annually. This study aims to address this issue by proposing a cloud-building information modeling (BIM)-based framework to provide real-time safety monitoring on construction sites to enhance safety practices and reduce fatalities.

Design/methodology/approach

This system integrates an automated safety tracking mobile app to detect hazardous locations on construction sites, a cloud-based BIM system for visualization of worker tracking on a virtual construction site and a Web interface to visualize and monitor site safety.

Findings

The study’s results indicate that implementing a comprehensive automated safety monitoring approach is feasible and suitable for general indoor construction site environments. Furthermore, the assessment of an advanced safety monitoring system has been successfully implemented, indicating its potential effectiveness in enhancing safety practices in construction sites.

Practical implications

By using this system, the construction industry can prevent accidents and fatalities, promote the adoption of new technologies and methods with minimal effort and cost and improve safety outcomes and productivity. This system can reduce workers’ compensation claims, insurance costs and legal penalties, benefiting all stakeholders involved.

Originality/value

To the best of the authors’ knowledge, this study represents the first attempt in Bangladesh to develop a mobile app-based technological solution aimed at reforming construction safety culture by using BIM technology. This has the potential to change the construction sector’s attitude toward accepting new technologies and cultures through its convenient choice of equipment.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 6 November 2023

Hoi Ching Cheung, Yan Yin Marco Lo, Dickson K.W. Chiu and Elaine W.S. Kong

This study examines academic librarians' perceptions and attitudes toward Internet of Things (IoT) applications in Hong Kong academic libraries and the problems and possible…

Abstract

Purpose

This study examines academic librarians' perceptions and attitudes toward Internet of Things (IoT) applications in Hong Kong academic libraries and the problems and possible improvements in using IoT technologies to strengthen library services.

Design/methodology/approach

This qualitative research used video conferencing software for semi-structured, one-on-one interviews. Participants were given introductory material about the IoT and asked to complete an interview. The data were analyzed using inductive theme clustering for this study.

Findings

The analysis identified three themes: perception about applying IoT technology to the library, problems and improvements in using IoT. Participants were generally optimistic about the potential benefits of IoT for improving library operations and providing personalized services. However, they also expressed concerns about privacy and security, errors and extra efforts for information literacy training. They suggested improvements such as incorporating facial recognition technology, advanced RFID technology and collections identification technology to enhance user experience.

Originality/value

Most studies examined users' views rather than librarians' on IoT applications, which few studies cover, especially in East Asia.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 6 July 2023

Iqra Masroor and Jamshed Aslam Ansari

Compact and wideband antennas are the need of modern wireless systems that preferably work with compact, low-profile and easy-to-install devices that provide a wider coverage of…

Abstract

Purpose

Compact and wideband antennas are the need of modern wireless systems that preferably work with compact, low-profile and easy-to-install devices that provide a wider coverage of operating frequencies. The purpose of this paper is to propose a novel compact and ultrawideband (UWB) microstrip patch antenna intended for high frequency wireless applications.

Design/methodology/approach

A square microstrip patch antenna was initially modeled on finite element method-based electromagnetic simulation tool high frequency structure simulator. It was then loaded with a rectangular slit and Koch snowflake-shaped fractal notches for bandwidth enhancement. The fabricated prototype was tested by using vector network analyzer from Agilent Technologies, N5247A, Santa Clara, California, United States (US).

Findings

The designed Koch fractal patch antenna is highly compact with dimensions of 10 × 10 mm only and possesses UWB characteristics with multiple resonances in the operating band. The −10 dB measured impedance bandwidth was observed to be approximately 13.65 GHz in the frequency range (23.20–36.85 GHz).

Originality/value

Owing to its simple and compact structure, positive and substantial gain values, high radiation efficiency and stable radiation patterns throughout the frequency band of interest, the proposed antenna is a suitable candidate for high frequency wireless applications in the K (18–27 GHz) and Ka (26.5–40 GHz) microwave bands.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 12 October 2023

Xiaoli Su, Lijun Zeng, Bo Shao and Binlong Lin

The production planning problem with fine-grained information has hardly been considered in practice. The purpose of this study is to investigate the data-driven production…

Abstract

Purpose

The production planning problem with fine-grained information has hardly been considered in practice. The purpose of this study is to investigate the data-driven production planning problem when a manufacturer can observe historical demand data with high-dimensional mixed-frequency features, which provides fine-grained information.

Design/methodology/approach

In this study, a two-step data-driven optimization model is proposed to examine production planning with the exploitation of mixed-frequency demand data is proposed. First, an Unrestricted MIxed DAta Sampling approach is proposed, which imposes Group LASSO Penalty (GP-U-MIDAS). The use of high frequency of massive demand information is analytically justified to significantly improve the predictive ability without sacrificing goodness-of-fit. Then, integrated with the GP-U-MIDAS approach, the authors develop a multiperiod production planning model with a rolling cycle. The performance is evaluated by forecasting outcomes, production planning decisions, service levels and total cost.

Findings

Numerical results show that the key variables influencing market demand can be completely recognized through the GP-U-MIDAS approach; in particular, the selected accuracy of crucial features exceeds 92%. Furthermore, the proposed approach performs well regarding both in-sample fitting and out-of-sample forecasting throughout most of the horizons. Taking the total cost and service level obtained under the actual demand as the benchmark, the mean values of both the service level and total cost differences are reduced. The mean deviations of the service level and total cost are reduced to less than 2.4%. This indicates that when faced with fluctuating demand, the manufacturer can adopt the proposed model to effectively manage total costs and experience an enhanced service level.

Originality/value

Compared with previous studies, the authors develop a two-step data-driven optimization model by directly incorporating a potentially large number of features; the model can help manufacturers effectively identify the key features of market demand, improve the accuracy of demand estimations and make informed production decisions. Moreover, demand forecasting and optimal production decisions behave robustly with shifting demand and different cost structures, which can provide manufacturers an excellent method for solving production planning problems under demand uncertainty.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Access

Year

Last 12 months (176)

Content type

Earlycite article (176)
1 – 10 of 176