Search results

1 – 10 of 333
Article
Publication date: 13 December 2022

Zhenhua Luo, Juntao Guo, Jianqiang Han and Yuhong Wang

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in…

Abstract

Purpose

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in China is in the initial stage of development, which is prone to construction safety issues. This study aims to evaluate the construction safety risks of prefabricated subway stations in China and formulate corresponding countermeasures to ensure construction safety.

Design/methodology/approach

A construction safety risk evaluation index system for the prefabricated subway station was established through literature research and the Delphi method. Furthermore, based on the structure entropy weight method, matter-element theory and evidence theory, a hybrid evaluation model is developed to evaluate the construction safety risks of prefabricated subway stations. The basic probability assignment (BPA) function is obtained using the matter-element theory, the index weight is calculated using the structure entropy weight method to modify the BPA function and the risk evaluation level is determined using the evidence theory. Finally, the reliability and applicability of the evaluation model are verified with a case study of a prefabricated subway station project in China.

Findings

The results indicate that the level of construction safety risks in the prefabricated subway station project is relatively low. Man risk, machine risk and method risk are the key factors affecting the overall risk of the project. The evaluation results of the first-level indexes are discussed, and targeted countermeasures are proposed. Therefore, management personnel can deeply understand the construction safety risks of prefabricated subway stations.

Originality/value

This research fills the research gap in the field of construction safety risk assessment of prefabricated subway stations. The methods for construction safety risk assessment are summarized to establish a reliable hybrid evaluation model, laying the foundation for future research. Moreover, the construction safety risk evaluation index system for prefabricated subway stations is proposed, which can be adopted to guide construction safety management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 May 2022

Cheng Fan, Deng Binchao and Yilin Yin

Under the background that engineering, procurement and construction (EPC) contracting model is introduced to adapt to the highly fragmented characteristics of prefabricated…

Abstract

Purpose

Under the background that engineering, procurement and construction (EPC) contracting model is introduced to adapt to the highly fragmented characteristics of prefabricated construction, the schedule management of general contractor is faced with the challenge of dynamic transmission and interaction of construction scheduling-related risk. The purpose of this paper is to develop the hierarchy of prefabricated construction scheduling-related risks from the perspective of the general contractor, and to analyze the transmission mechanism between risks. The paper also aims to further distinguish the difference of the impact degree of scheduling-related risks, and provide reference for formulating the strategy to alleviate the construction delay.

Design/methodology/approach

Based on a review of the literature on prefabricated buildings, this paper identifies 22 scheduling-related risks in construction from the perspective of the general contractor. Semi-structured interviews were then conducted to obtain experts' views on the interrelationships among these risks. Following this, their overall structure was determined by using a hierarchical structure established by using interpretive structural modeling (ISM), and Matrice d'Impacts Croisés Multiplication Appliqués à un Classement (MICMAC) technique was applied to classify them into four groups according to their driving and dependence powers.

Findings

The results indicate that the 22 scheduling-related risks in construction followed the inherent path of step-by-step transmission, and all of them could cause different degrees of delays in prefabricated construction. Among them, general experience in contracting projects, the use of emerging technologies and the completeness of the relevant standards and specifications were strong drivers of scheduling delays in construction, and should be prioritized by the general contractor in schedule management. The transitive link between scheduling risks can guide them in developing prevention strategies.

Research limitations/implications

Data quality and reliability risks are the major drawbacks of semi-structured interviews. These were minimized by engaging experts with rich theoretical and hands-on experience in prefabricated construction projects. The hierarchical model only reflects static influence relationships, and so dynamic interactions among scheduling-related risks should be studied in future.

Originality/value

The primary value of this study is in its development of a hierarchical model by using the integrated ISM–MICMAC approach that reflects the interaction between scheduling risks in the construction of prefabricated buildings. The hierarchy of these risks and the results of a “driving-dependence power” analysis can guide the general contractor in taking targeted preventive measures to avoid scheduling delays in the construction of prefabricated buildings.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 February 2024

Xinnan Liu, Jiani Meng, Jiayi Wang and Yingbo Ji

This study adopts the perspective of dynamic capabilities to investigate influencing factors and proposes improvement strategies of supply chain resilience of prefabricated…

Abstract

Purpose

This study adopts the perspective of dynamic capabilities to investigate influencing factors and proposes improvement strategies of supply chain resilience of prefabricated construction.

Design/methodology/approach

The structural equation model (SEM) is used to identify and verify the relationship between factors influencing supply chain resilience of prefabricated construction from the perspective of dynamic capabilities. The system dynamics (SD) model is constructed to dynamically simulate the specific effects of different influencing factors.

Findings

Results indicate that: (1) An evaluation index system for supply chain resilience of prefabricated construction containing five first-level indicators and 36 second-level indicators is constructed; (2) Ability to anticipate, ability to respond, ability to adapt, ability to recover and ability to learn are positively correlated with the supply chain resilience of prefabricated construction and (3) ANT3 (information system), RES1 (quick response), ADA3 (buffer stock) and LEA4 (trust) are the most leading factors influencing supply chain resilience of prefabricated construction over time.

Originality/value

This study fulfills the need for an in-depth exploration of the various influencing factors on supply chain resilience of prefabricated construction from the perspective of dynamic capabilities. Furthermore, this study provides improvement strategies to enhance supply chain resilience of prefabricated construction in China.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 May 2023

Yanhu Han, Xiao Fang, Xinyu Zhao and Lufan Wang

The development of prefabricated buildings has become one of the primary solutions to transform the traditional construction industry around the world. Incentive policy is one of…

Abstract

Purpose

The development of prefabricated buildings has become one of the primary solutions to transform the traditional construction industry around the world. Incentive policy is one of the important driving factors for the development of prefabricated building. The policy system in the field of prefabricated buildings needs to be improved urgently. However, there is still a dearth of research on how incentive policies exert impact on the development of prefabricated buildings. This paper aims to reveal the impact mechanisms of different types of policies on the development system of prefabricated buildings.

Design/methodology/approach

This study categorizes prefabricated building policies, constructs a system dynamics model of prefabricated building policies and conducts scenario simulations to examine the impact and sensitivity of different types of policies on the development system of prefabricated buildings.

Findings

The results show that compulsory policies play a greater role in the early stage of prefabricated building development and need to be withdrawn at the right time. Preferential and encouraging policies play an incentive role in the middle and later stages of prefabricated building development. Encouraging policies predominate in the later stage of prefabricated building development. Based on the research results, policy recommendations for prefabricated building development are put forward respectively from the government, developers and consumers.

Originality/value

The research results are expected to make up for the lack of clear policies paths in existing research and provide theoretical references for the formulation and optimization of future policies.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 March 2024

Keyu Chen, Beiyu You, Yanbo Zhang and Zhengyi Chen

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction…

Abstract

Purpose

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction efficiency compared with conventional approaches. During the construction of prefabricated buildings, the overall efficiency largely depends on the lifting sequence and path of each prefabricated component. To improve the efficiency and safety of the lifting process, this study proposes a framework for automatically optimizing the lifting path of prefabricated building components using building information modeling (BIM), improved 3D-A* and a physic-informed genetic algorithm (GA).

Design/methodology/approach

Firstly, the industry foundation class (IFC) schema for prefabricated buildings is established to enrich the semantic information of BIM. After extracting corresponding component attributes from BIM, the models of typical prefabricated components and their slings are simplified. Further, the slings and elements’ rotations are considered to build a safety bounding box. Secondly, an efficient 3D-A* is proposed for element path planning by integrating both safety factors and variable step size. Finally, an efficient GA is designed to obtain the optimal lifting sequence that satisfies physical constraints.

Findings

The proposed optimization framework is validated in a physics engine with a pilot project, which enables better understanding. The results show that the framework can intuitively and automatically generate the optimal lifting path for each type of prefabricated building component. Compared with traditional algorithms, the improved path planning algorithm significantly reduces the number of nodes computed by 91.48%, resulting in a notable decrease in search time by 75.68%.

Originality/value

In this study, a prefabricated component path planning framework based on the improved A* algorithm and GA is proposed for the first time. In addition, this study proposes a safety-bounding box that considers the effects of torsion and slinging of components during lifting. The semantic information of IFC for component lifting is enriched by taking into account lifting data such as binding positions, lifting methods, lifting angles and lifting offsets.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 December 2022

Dan Wang, Jingyi Luo and Yongkun Wang

This paper constructs the uncertainty analysis model of prefabricated building supply chain risk. The model is designed to study the formation path of prefabricated building…

Abstract

Purpose

This paper constructs the uncertainty analysis model of prefabricated building supply chain risk. The model is designed to study the formation path of prefabricated building supply chain risk and is expected to be used by industry stakeholders for supply chain risk management.

Design/methodology/approach

Based on the uncertainty circle model, construct a configuration analysis framework for supply chain risks in prefabricated buildings. The fuzzy set qualitative comparative analysis (fsQCA) is used to study the configuration influence of five uncertain factors, including environment, plan-control, demand-supply, manufacturing and assembly-transportation, on the risk of the prefabricated building supply chain.

Findings

There are three paths to promote the high-risk generation of the prefabricated building supply chain: assembly-transportation-oriented, plan-control-oriented and manufacturing-oriented. There is a specific equivalent substitution relationship among the five causal conditions. Under specific conditions, different combinations of conditions have the same effect on promoting supply chain high-risk generation through equivalent substitution.

Originality/value

The multiple concurrent causal relationships of risk conditions in the assembly construction supply chain are studied under the grouping perspective, which helps to expand the research perspective of assembly construction supply chain risk and provides theoretical guidance for supply chain risk management of construction enterprises.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 February 2024

Chi Zhang, Kun He, Wenjie Zhang, Ting Jin and Yibin Ao

To further promote application of BIM technology in construction of prefabricated buildings, influencing factors and evolution laws of willingness to apply BIM technology are…

Abstract

Purpose

To further promote application of BIM technology in construction of prefabricated buildings, influencing factors and evolution laws of willingness to apply BIM technology are explored from the perspective of willingness of participants.

Design/methodology/approach

In this paper, a tripartite game model involving the design firm, component manufacturer and construction firm is constructed and a system dynamics method is used to explore the influencing factors and game evolution path of three parties' application of BIM technology, from three perspectives, cost, benefit and risk.

Findings

The government should formulate measures for promoting the application of BIM according to different BIM application willingness of the parties. When pursuing deeper BIM application, the design firm should pay attention to reducing the speculative benefits of the component manufacturer and the construction firm. The design firm and the component manufacturer should pay attention to balancing the cost and benefit of the design firm while enhancing collaborative efforts. When the component manufacturer and the construction firm cooperate closely, it is necessary to pay attention to balanced distribution of interests of both parties and lower the risk of BIM application.

Originality/value

This study fills a research gap by comprehensively investigating the influencing factors and game evolution paths of willingness of the three parties to apply BIM technology to prefabricated buildings. The research helps to effectively improve the building quality and construction efficiency, and is expected to contribute to the sustainability of built environment in the context of circular economy in China.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 August 2022

Zhao Xu, Yangze Liang, Hongyu Lu, Wenshuo Kong and Gang Wu

Construction schedule delays and quality problems caused by construction errors are common in the field of prefabricated buildings. The effective monitoring of the construction…

Abstract

Purpose

Construction schedule delays and quality problems caused by construction errors are common in the field of prefabricated buildings. The effective monitoring of the construction project process is one of the key factors for the success of a project. How to effectively monitor the construction process of prefabricated building construction projects is an urgent problem to be solved. Aiming at the problems existing in the monitoring of the construction process of prefabricated buildings, this paper proposes a monitoring method based on the feature extraction of point cloud model.

Design/methodology/approach

This paper uses Trimble X7 3D laser scanner to complete field data collection experiments. The point cloud data are preprocessed, and the prefabricated component segmentation and geometric feature measurement are completed based on the PCL platform. Aiming at the problem of noisy points and large amount of data in the original point cloud data, the preprocessing is completed through the steps of constructing topological relations, thinning, and denoising. According to the spatial position relationship and geometric characteristics of prefabricated frame structure, the segmentation algorithm flow is designed in this paper. By processing the point cloud data of single column and beam members, the quality of precast column and beam members is measured. The as-built model and as-designed model are compared to realize the visual monitoring of construction progress.

Findings

The experimental results show that the dimensional measurement accuracy of beam and column proposed in this paper is more than 95%. This method can effectively detect the quality of prefabricated components. In the aspect of progress monitoring, the visualization of real-time progress monitoring is realized.

Originality/value

This paper proposed a new monitoring method based on feature extraction of the point cloud model, combined with three-dimensional laser scanning technology. This method allows for accurate monitoring of the construction process, rapid detection of construction information, and timely detection of construction quality errors and progress delays. The treatment process based on point cloud data has strong applicability, and the real-time point cloud data transfer treatment can guarantee the timeliness of monitoring.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 August 2022

Yanhu Han, Xiyu Yan and Poorang Piroozfar

As a strand in industrialization movement in architecture, engineering and construction (AEC) industry, prefabricated construction (PC) has gained widespread popularity due to…

1902

Abstract

Purpose

As a strand in industrialization movement in architecture, engineering and construction (AEC) industry, prefabricated construction (PC) has gained widespread popularity due to high efficiency, energy saving, low environmental impacts, safety and other advantages of PC. Well-managed supply chain can further leverage the advantages of PC. However, there is a lack of more systematically overview of the prefabricated construction supply chain (PCSC). This paper aims to comb the current status and look into the future direction of PCSC by reviewing the existing research.

Design/methodology/approach

In total, 131 articles related to prefabricated construction supply chain management (PCSCM) from 2000 to 2022 have been collated to (1) conduct a bibliometric analysis by using VOSviewer, including the literature sources, keywords co-occurrence, co-authorships, authorship citation and country active in the field of PCSCM; (2) classify and summarize the status of research in PCSCM through qualitative discussion and (3) point out the future research directions.

Findings

In total, 131 articles are carried out for bibliometric analysis and in-depth qualitative discussion, the visualization maps and the main research themes in the field of PCSCM are obtained. The results show that supply chain intelligentization and informatization are hot topics. Finally, future research directions that should be paid attention to in the field of PCSCM are pointed out.

Practical implications

This study can help project managers understand the current status and problems of PCSC operations and provide a basis for future management decisions.

Originality/value

Compared with previous studies, this study adds the dimension of “article authorship” to the quantitative analysis and discusses the research themes in the field of PCSCM in a comprehensive manner. In addition, this paper deeply discusses the main research topics from both the specific contents and research methods adopted.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 February 2024

Dat Tien Doan, Tuyet Phuoc Anh Mai, Ali GhaffarianHoseini, Amirhosein Ghaffarianhoseini and Nicola Naismith

This study aims to identify the primary research areas of modern methods of construction (MMC) along with its current trends and developments.

Abstract

Purpose

This study aims to identify the primary research areas of modern methods of construction (MMC) along with its current trends and developments.

Design/methodology/approach

A combination of bibliometric and qualitative analysis is adopted to examine 1,957 MMC articles in the Scopus database. With the support of CiteSpace 6.1.R6, the clusters, leading authors, journals, institutions and countries in the field of MMC are examined.

Findings

Offsite construction, inter-modular connections, augmenting output, prefabricated concrete beams and earthquake-resilient prefabricated beam–column steel joints are the top five research areas in MMC. Among them, offsite construction and inter-modular connections are significantly focused, with many research articles. The potential for collaboration, among prominent authors such as Wang, J., Liu, Y. and Wang, Y., explains the recent rapid growth of the MMC field of research. With a total of 225 articles, Engineering Structures is the journal that has published the most articles on MMC. China is the leading country in this field, and the Ministry of Education China is the top institution in MMC.

Originality/value

The findings of this study bear significant implications for stakeholders in academia and industry alike. In academia, these insights allow researchers to identify research gaps and foster collaboration, steering efforts toward innovative and impactful outcomes. For industries using MMC practices, the clarity provided on MMC techniques facilitates the efficient adoption of best practices, thereby promoting collaboration, innovation and global problem-solving within the construction field.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 333