Search results

1 – 10 of over 1000
Article
Publication date: 4 January 2023

Xiaomin Qi, Qiang Du, Patrick X.W. Zou and Ning Huang

The purpose of this paper is to develop a model considering synergy effect for prefabricated construction service combination selection.

145

Abstract

Purpose

The purpose of this paper is to develop a model considering synergy effect for prefabricated construction service combination selection.

Design/methodology/approach

This research defines prefabricated construction service as a service-led construction method that meets the specific requirements of clients. Based on network theory, the multi-dimensional collaborative relationships of the prefabricated construction inter-services are formulated. The synergy effect is quantitatively calculated through the linear weighting of the strengths of collaborative relationships. Further, a weighted synergy network (WSN) is developed, from which a service composition selection model considering the synergy effect is established. Then, a genetic algorithm is employed to implement the model.

Findings

The results showed that (1) when the number of prefabricated construction services is increased, the synergy effect of combination options is enhanced; (2) The finer-grained prefabricated construction services, the stronger the synergy effect of service combination; (3) Clients have heterogeneous preferences for collaborative relationships, and there are differences in the synergy effect of service combination.

Originality/value

The contribution of this research includes proposed a method to quantify the synergy effect from the perspective of collaborative relationships, explored the specific procedure for the prefabricated construction service combination selection under the service-led construction, and provided a reference for promoting the development in construction. Besides, the model proposed could be applied to prefabricated construction service composition selection with diverse research boundaries or client preferences by executing the same procedure.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 October 2020

Ting Luo, Xiaolong Xue, Yongtao Tan, Yuna Wang and Yuanxin Zhang

This paper aimed to introduce a systematic body of knowledge via a scientometric review, guiding the sustainable transition from conventional construction to prefabricated

1599

Abstract

Purpose

This paper aimed to introduce a systematic body of knowledge via a scientometric review, guiding the sustainable transition from conventional construction to prefabricated construction. The construction industry currently faces a challenge to balance sustainable development and the construction of new buildings. In this context, one of the most recent debates is prefabricated construction. As an emerging construction approach, although existing knowledge makes contributions to the implementation of prefabricated construction, there is a lack of a comprehensive and in-depth overview of the critical knowledge themes and gaps.

Design/methodology/approach

This study uses the scientometric analysis to review the state-of-the-art knowledge of prefabricated construction. It retrieved data from the Web of Science core collection database. CiteSpace software was used to conduct the analysis and visualization; three analysis methods identify the knowledge hotspots, knowledge domains and knowledge topics. Finally, according to integrating the hidden connections among results, a body of knowledge for prefabricated construction application can be inferred.

Findings

The results show that 120 knowledge hotspots, five critical knowledge domains and five prominent knowledge topics are vital for promoting implementation of prefabricated construction. Based on the afore analysis, a body of knowledge for prefabricated construction that can systematically cover a broad knowledge of prefabricated construction-related research and activities are integrated and proposed in this paper.

Originality/value

Body of knowledge systematically covers a broad knowledge of prefabricated construction applications and is vital to guide researchers and practitioners to conduct related research and activities, thereby promoting the sustainable transition to prefabricated construction implementation.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 May 2016

Daniel O'Neill and Samantha Organ

The purpose of this paper is to explore academic papers and reports and present a chronology of the evolution of British low-rise prefabricated housing. The paper provides…

3635

Abstract

Purpose

The purpose of this paper is to explore academic papers and reports and present a chronology of the evolution of British low-rise prefabricated housing. The paper provides chronological information for construction and surveying researchers undertaking research in associated areas.

Design/methodology/approach

This is a qualitative literature review, providing an exploration and analysis of academic papers and reports on low-rise prefabricated housing.

Findings

A substantial literature was discovered. However, there are gaps in the available literature. The history of British construction technology is a rich research area but is under-researched. Prefabricated housing has a long history dating back to the eleventh century. Stigmatised from the failures of housing in the twentieth century, it is being increasingly used again in the twenty-first century when considering mass housing supply.

Research limitations/implications

This paper provides researchers with an overview of the history of low-rise prefabricated housing in Britain. It is not a comprehensive in-depth study; such would require numerous larger individual studies.

Originality/value

From reviewing literature it was evident that there was a broad literature, but there was no single journal publication exploring the evolution of British low-rise prefabricated housing. The research provides an overview, exploration and analysis of the literature while providing a chronology. The evolution of prefabricated housing is chronologically presented. Areas for further research are also recommended.

Details

Structural Survey, vol. 34 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 13 December 2022

Zhenhua Luo, Juntao Guo, Jianqiang Han and Yuhong Wang

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in…

Abstract

Purpose

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in China is in the initial stage of development, which is prone to construction safety issues. This study aims to evaluate the construction safety risks of prefabricated subway stations in China and formulate corresponding countermeasures to ensure construction safety.

Design/methodology/approach

A construction safety risk evaluation index system for the prefabricated subway station was established through literature research and the Delphi method. Furthermore, based on the structure entropy weight method, matter-element theory and evidence theory, a hybrid evaluation model is developed to evaluate the construction safety risks of prefabricated subway stations. The basic probability assignment (BPA) function is obtained using the matter-element theory, the index weight is calculated using the structure entropy weight method to modify the BPA function and the risk evaluation level is determined using the evidence theory. Finally, the reliability and applicability of the evaluation model are verified with a case study of a prefabricated subway station project in China.

Findings

The results indicate that the level of construction safety risks in the prefabricated subway station project is relatively low. Man risk, machine risk and method risk are the key factors affecting the overall risk of the project. The evaluation results of the first-level indexes are discussed, and targeted countermeasures are proposed. Therefore, management personnel can deeply understand the construction safety risks of prefabricated subway stations.

Originality/value

This research fills the research gap in the field of construction safety risk assessment of prefabricated subway stations. The methods for construction safety risk assessment are summarized to establish a reliable hybrid evaluation model, laying the foundation for future research. Moreover, the construction safety risk evaluation index system for prefabricated subway stations is proposed, which can be adopted to guide construction safety management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 October 2020

Gulden Gumusburun Ayalp and Ilhami Ay

Prefabricated construction technology enables relatively faster and easier construction of building structures at a lower project cost, providing improved quality control with…

Abstract

Purpose

Prefabricated construction technology enables relatively faster and easier construction of building structures at a lower project cost, providing improved quality control with minimal material waste. Despite the advantages of prefabricated construction systems, they are not extensively used in Turkey because of specific yet largely undefined challenges. Therefore, the purpose of this study aims to determine the factors currently affecting the extensive use of prefabricated construction systems in Turkey.

Design/methodology/approach

The reasons for such systems not being used extensively in Turkey were examined using responses to a questionnaire distributed amongst architects working at design firms, prefabricated-building manufacturers and contractors. The obtained survey data were statistically analysed using the SPSS 22 and LISREL 8.7 software to rank the severity of the identified challenges and determine the most critical factors.

Findings

Eight critical factors groups affecting the use of prefabricated construction systems and their associated factors were identified according the responses provided by the participants. Potential solutions and recommendations were proposed based on these factor groups that are expected facilitate the implementation of prefabricated construction systems in Turkey.

Originality/value

Little previous research has provided insight into the specific factors limiting the use of prefabricated construction systems. This study accordingly approaches the subject considering all phases of prefabricated construction systems and presents a structural model of the factors obtained by a confirmatory factor analysis for application to expand the use of prefabricated construction systems.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 5 May 2022

Cheng Fan, Deng Binchao and Yilin Yin

Under the background that engineering, procurement and construction (EPC) contracting model is introduced to adapt to the highly fragmented characteristics of prefabricated

Abstract

Purpose

Under the background that engineering, procurement and construction (EPC) contracting model is introduced to adapt to the highly fragmented characteristics of prefabricated construction, the schedule management of general contractor is faced with the challenge of dynamic transmission and interaction of construction scheduling-related risk. The purpose of this paper is to develop the hierarchy of prefabricated construction scheduling-related risks from the perspective of the general contractor, and to analyze the transmission mechanism between risks. The paper also aims to further distinguish the difference of the impact degree of scheduling-related risks, and provide reference for formulating the strategy to alleviate the construction delay.

Design/methodology/approach

Based on a review of the literature on prefabricated buildings, this paper identifies 22 scheduling-related risks in construction from the perspective of the general contractor. Semi-structured interviews were then conducted to obtain experts' views on the interrelationships among these risks. Following this, their overall structure was determined by using a hierarchical structure established by using interpretive structural modeling (ISM), and Matrice d'Impacts Croisés Multiplication Appliqués à un Classement (MICMAC) technique was applied to classify them into four groups according to their driving and dependence powers.

Findings

The results indicate that the 22 scheduling-related risks in construction followed the inherent path of step-by-step transmission, and all of them could cause different degrees of delays in prefabricated construction. Among them, general experience in contracting projects, the use of emerging technologies and the completeness of the relevant standards and specifications were strong drivers of scheduling delays in construction, and should be prioritized by the general contractor in schedule management. The transitive link between scheduling risks can guide them in developing prevention strategies.

Research limitations/implications

Data quality and reliability risks are the major drawbacks of semi-structured interviews. These were minimized by engaging experts with rich theoretical and hands-on experience in prefabricated construction projects. The hierarchical model only reflects static influence relationships, and so dynamic interactions among scheduling-related risks should be studied in future.

Originality/value

The primary value of this study is in its development of a hierarchical model by using the integrated ISM–MICMAC approach that reflects the interaction between scheduling risks in the construction of prefabricated buildings. The hierarchy of these risks and the results of a “driving-dependence power” analysis can guide the general contractor in taking targeted preventive measures to avoid scheduling delays in the construction of prefabricated buildings.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 February 2024

Xinnan Liu, Jiani Meng, Jiayi Wang and Yingbo Ji

This study adopts the perspective of dynamic capabilities to investigate influencing factors and proposes improvement strategies of supply chain resilience of prefabricated

Abstract

Purpose

This study adopts the perspective of dynamic capabilities to investigate influencing factors and proposes improvement strategies of supply chain resilience of prefabricated construction.

Design/methodology/approach

The structural equation model (SEM) is used to identify and verify the relationship between factors influencing supply chain resilience of prefabricated construction from the perspective of dynamic capabilities. The system dynamics (SD) model is constructed to dynamically simulate the specific effects of different influencing factors.

Findings

Results indicate that: (1) An evaluation index system for supply chain resilience of prefabricated construction containing five first-level indicators and 36 second-level indicators is constructed; (2) Ability to anticipate, ability to respond, ability to adapt, ability to recover and ability to learn are positively correlated with the supply chain resilience of prefabricated construction and (3) ANT3 (information system), RES1 (quick response), ADA3 (buffer stock) and LEA4 (trust) are the most leading factors influencing supply chain resilience of prefabricated construction over time.

Originality/value

This study fulfills the need for an in-depth exploration of the various influencing factors on supply chain resilience of prefabricated construction from the perspective of dynamic capabilities. Furthermore, this study provides improvement strategies to enhance supply chain resilience of prefabricated construction in China.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 May 2020

Yingbo Ji, Kai Qi, Yuan Qi, Yan Li, Hong Xian Li, Zhen Lei and Yan Liu

This research aims to propose a comparative environmental analysis of conventional and prefabricated construction techniques utilizing a building information modelling (BIM…

1270

Abstract

Purpose

This research aims to propose a comparative environmental analysis of conventional and prefabricated construction techniques utilizing a building information modelling (BIM) technique.

Design/methodology/approach

A set of indicators are selected to assess the environmental emissions throughout the construction life cycle, based on BIM platform. An existing project involving ten apartment buildings in Shanghai is selected as a case study.

Findings

The results reveal that prefabricated construction demonstrates environment-friendly performance with some exceptions of acidification and mineral resource consumption. Environmental impacts can also be further reduced by increasing the projected area ratio and percentage of project prefabrication.

Originality/value

Overall, the proposed method can be used to identify relevant environmental merits and for decision-making of appropriate construction techniques in building construction projects.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 May 2023

Yanhu Han, Xiao Fang, Xinyu Zhao and Lufan Wang

The development of prefabricated buildings has become one of the primary solutions to transform the traditional construction industry around the world. Incentive policy is one of…

Abstract

Purpose

The development of prefabricated buildings has become one of the primary solutions to transform the traditional construction industry around the world. Incentive policy is one of the important driving factors for the development of prefabricated building. The policy system in the field of prefabricated buildings needs to be improved urgently. However, there is still a dearth of research on how incentive policies exert impact on the development of prefabricated buildings. This paper aims to reveal the impact mechanisms of different types of policies on the development system of prefabricated buildings.

Design/methodology/approach

This study categorizes prefabricated building policies, constructs a system dynamics model of prefabricated building policies and conducts scenario simulations to examine the impact and sensitivity of different types of policies on the development system of prefabricated buildings.

Findings

The results show that compulsory policies play a greater role in the early stage of prefabricated building development and need to be withdrawn at the right time. Preferential and encouraging policies play an incentive role in the middle and later stages of prefabricated building development. Encouraging policies predominate in the later stage of prefabricated building development. Based on the research results, policy recommendations for prefabricated building development are put forward respectively from the government, developers and consumers.

Originality/value

The research results are expected to make up for the lack of clear policies paths in existing research and provide theoretical references for the formulation and optimization of future policies.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 26 March 2024

Keyu Chen, Beiyu You, Yanbo Zhang and Zhengyi Chen

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction

Abstract

Purpose

Prefabricated building has been widely applied in the construction industry all over the world, which can significantly reduce labor consumption and improve construction efficiency compared with conventional approaches. During the construction of prefabricated buildings, the overall efficiency largely depends on the lifting sequence and path of each prefabricated component. To improve the efficiency and safety of the lifting process, this study proposes a framework for automatically optimizing the lifting path of prefabricated building components using building information modeling (BIM), improved 3D-A* and a physic-informed genetic algorithm (GA).

Design/methodology/approach

Firstly, the industry foundation class (IFC) schema for prefabricated buildings is established to enrich the semantic information of BIM. After extracting corresponding component attributes from BIM, the models of typical prefabricated components and their slings are simplified. Further, the slings and elements’ rotations are considered to build a safety bounding box. Secondly, an efficient 3D-A* is proposed for element path planning by integrating both safety factors and variable step size. Finally, an efficient GA is designed to obtain the optimal lifting sequence that satisfies physical constraints.

Findings

The proposed optimization framework is validated in a physics engine with a pilot project, which enables better understanding. The results show that the framework can intuitively and automatically generate the optimal lifting path for each type of prefabricated building component. Compared with traditional algorithms, the improved path planning algorithm significantly reduces the number of nodes computed by 91.48%, resulting in a notable decrease in search time by 75.68%.

Originality/value

In this study, a prefabricated component path planning framework based on the improved A* algorithm and GA is proposed for the first time. In addition, this study proposes a safety-bounding box that considers the effects of torsion and slinging of components during lifting. The semantic information of IFC for component lifting is enriched by taking into account lifting data such as binding positions, lifting methods, lifting angles and lifting offsets.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 1000