Search results

1 – 10 of over 3000
Open Access
Article
Publication date: 18 April 2024

Mohamed Ismail Sabry

This paper investigates the effect of state-society relations on the industrially-related growth paths of developed countries.

Abstract

Purpose

This paper investigates the effect of state-society relations on the industrially-related growth paths of developed countries.

Design/methodology/approach

It introduces a novel theoretical framework, the state-business-labor relations (SBLR) framework, where four main actors are identified: the state, big businesspersons or tycoons, owners and managers of small and medium enterprises (SMEs) or Entrepreneurs and labor. Different SBLR categories or modes are introduced depending on levels of coordination and power relations between the studied actors. The paper then investigates how these SBLR modes, through adopting various policies targeting the industrial sector, lead to different growth paths. Rather than focusing only on economic growth, this research regards a growth path as a matrix of the performance in long-run growth and equality of distribution.

Findings

Using regression analysis and statistical data, the results suggest that the Co-Balanced mode, having higher levels of coordination and lower favoritism, leads to the best growth path among the four introduced modes, especially with its emphasis on high levels of venture capital availability and easiness of starting business. while the Lib-Capture mode, characterized by lower coordination and higher favoritism, seems to have the worst growth path and the best implemented policy for this mode is suggested to be high profit taxes that seem to counter the negative impact of the existing high levels of favoritism.

Research limitations/implications

Despite the important findings that this research has reached, this paper is mainly meant to open a further investigation into this topic and open this dimension that the research on VoC and political economy have under-researched. A deeper investigation of SBLR typologies that could only be possible by having richer datasets with more data on coordination for the whole world, rather than only the advanced economies, would further our understanding of the dynamics that shape the growth paths of different countries of the world.

Practical implications

To realize the best industrial growth path, fighting favoritism should be an important objective. The negative impact of favoritism on innovation could not be disregarded in the eve of the fourth industrial revolution, where innovation is increasingly pivotal to future industrial development. Actively engaging societal groups in the policymaking process is important in addressing their concerns and balancing them at the same time. This should lead to the double benefit of formulating better policies that should foster growth as well as provide better distribution of this growth. High levels of coordination should help in realizing this objective. Yet, this could only be possible if societal groups are free to associate and aggregate their power and when there are means of preventing one actor from gaining more favorite treatment and exclusive influence over policymakers. The presence of both powerful and broadly represented business associations and labor unions and the existence of a government interested in coordinating their efforts-rather than letting itself be controlled by one group at the expense of the others-should help in the realization of the best growth path. Thus, institutional reform that empowers societal groups and enables them to defend their interests as well as fights all forms of corruption should lead to the realization of a more prosperous and equitable industrial development, with the “re-industrialization” of the developed world being no exception. The technological and social challenges of intensive automation and digitalization accompanying the fourth industrial revolution make the envisaged institutional reform more urgent.

Originality/value

This paper is introducing a novel theoretical framework for studying the effect of state-society relations, particularly SBLR, on the industrial growth paths of developed countries. It integrates three important bodies of literature in order to build a more comprehensive understanding of the dynamics of state-society relations and their economic consequences. These are the Varieties of Capitalism (VoC), State-Business Relations (SBR) and Industrial Relations. The SBLR framework differentiates between tycoons and entrepreneurs, an important distinction that often goes unnoticed. Different SBLR categories or modes are introduced, depending on levels of coordination and power relations between the actors. It is proposed in this research that the effect on growth paths goes beyond the simple dichotomy between CMEs and LMEs usually present in the literature of VoC and that power relations provide an essential complementary dimension in explaining this causality.

Details

Fulbright Review of Economics and Policy, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2635-0173

Keywords

Article
Publication date: 23 March 2023

Aditi Sushil Karvekar and Prasad Joshi

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To…

Abstract

Purpose

The purpose of this paper is to implement a closed loop regulated bidirectional DC to DC converter for an application in the electric power system of more electric aircraft. To provide a consistent power supply to all of the electronic loads in an aircraft at the desired voltage level, good efficiency and desired transient and steady-state response, a smart and affordable DC to DC converter architecture in closed loop mode is being designed and implemented.

Design/methodology/approach

The aircraft electric power system (EPS) uses a bidirectional half-bridge DC to DC converter to facilitate the electric power flow from the primary power source – an AC generator installed on the aircraft engine’s shaft – to the load as well as from the secondary power source – a lithium ion battery – to the load. Rechargeable lithium ion batteries are used because they allow the primary power source to continue recharging them whenever the aircraft engine is running smoothly and because, in the event that the aircraft engine becomes overloaded during takeoff or turbulence, the charged secondary power source can step in and supply the load.

Findings

A novel nonsingular terminal sliding mode voltage controller based on exponential reaching law is used to keep the load voltage constant under any of the aforementioned circumstances, and its performance is contrasted with a tuned PI controller on the basis of their respective transient and steady-state responses. The former gives a faster and better transient and steady-state response as compared to the latter.

Originality/value

This research gives a novel control scheme for incorporating an auxiliary power source, i.e. rechargeable battery, in more electric aircraft EPS. The battery is so implemented that it can get regeneratively charged when primary power supply is capable of handling an additional load, i.e. the battery. The charging and discharging of the battery is carried out in closed loop mode to ensure constant battery terminal voltage, constant battery current and constant load voltage as per the requirement. A novel sliding mode controller is used to improve transient and steady-state response of the system.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 March 2024

Zeyu Xing, Tachia Chin, Jing Huang, Mirko Perano and Valerio Temperini

The ongoing paradigm shift in the energy sector holds paramount implications for the realization of the sustainable development goals, encompassing critical domains such as…

Abstract

Purpose

The ongoing paradigm shift in the energy sector holds paramount implications for the realization of the sustainable development goals, encompassing critical domains such as resource optimization, environmental stewardship and workforce opportunities. Concurrently, this transformative trajectory within the power sector possesses a dual-edged nature; it may ameliorate certain challenges while accentuating others. In light of the burgeoning research stream on open innovation, this study aims to examine the intricate dynamics of knowledge-based industry-university-research networking, with an overarching objective to elucidate and calibrate the equilibrium of ambidextrous innovation within power systems.

Design/methodology/approach

The authors scrutinize the role of different innovation organizations in three innovation models: ambidextrous, exploitative and exploratory, and use a multiobjective decision analysis method-entropy weight TOPSIS. The research was conducted within the sphere of the power industry, and the authors mined data from the widely used PatSnap database.

Findings

Results show that the breadth of knowledge search and the strength of an organization’s direct relationships are crucial for ambidextrous innovation, with research institutions having the highest impact. In contrast, for exploitative innovation, depth of knowledge search, the number of R&D patents and the number of innovative products are paramount, with universities playing the most significant role. For exploratory innovation, the depth of knowledge search and the quality of two-mode network relations are vital, with research institutions yielding the best effect. Regional analysis reveals Beijing as the primary hub for ambidextrous and exploratory innovation organizations, while Jiangsu leads for exploitative innovation.

Practical implications

The study offers valuable implications to cope with the dynamic state of ambidextrous innovation performance of the entire power system. In light of the findings, the dynamic state of ambidextrous innovation performance within the power system can be adeptly managed. By emphasizing a balance between exploratory and exploitative strategies, stakeholders are better positioned to respond to evolving challenges and opportunities. Thus, the study offers pivotal guidance to ensure sustained adaptability and growth in the power sector’s innovation landscape.

Originality/value

The primary originality is to extend and refine the theoretical understanding of ambidextrous innovation within power systems. By integrating several theoretical frameworks, including social network theory, knowledge-based theory and resource-based theory, the authors enrich the theoretical landscape of power system ambidextrous innovation. Also, this inclusive examination of two-mode network structures, including the interplay between knowledge and cooperation networks, unveils the intricate interdependencies between these networks and the ambidextrous innovation of power systems. This approach significantly widens the theoretical parameters of innovation network research.

Details

Journal of Knowledge Management, vol. 28 no. 5
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 29 April 2024

Nana Wan and Jianchang Fan

This paper forms an e-commerce supply chain that include a manufacturer providing products and an online platform providing service. The reselling platform mode and the agent…

Abstract

Purpose

This paper forms an e-commerce supply chain that include a manufacturer providing products and an online platform providing service. The reselling platform mode and the agent platform mode are considered through an exploration of the manufacturer Stackelberg (MS), vertical Nash (VN), platform Stackelberg (PS) power structures. The purpose of this paper is to explore the pricing and platform service decisions under different platform selling modes and channel power structures.

Design/methodology/approach

Based on the game theory models, this paper investigates the interaction between the manufacturer and the online platform under four different scenarios. The optimal solutions of four models are provided. Through comparison analyses, this paper evaluates the impacts of platform selling mode and channel power structure on the pricing and platform service decisions and the members’ profits.

Findings

The manufacturer prefers the MS power structure in any platform mode. The online platform prefers the PS (MS) power structure under a low (high) service cost efficiency in the reselling platform mode, while prefers the PS and VN power structures in the agent platform mode. Moreover, the manufacturer prefers the agent (reselling) platform mode under a low (high) service cost efficiency in any power structure. The online platform prefers the reselling platform mode in the MS and PS power structures, while prefers the reselling (agent) platform mode under a low (high) service cost efficiency in the VN power structures.

Originality/value

The analysis result provides important managerial implications that help the supply chain members develop a better understanding of the selection of the platform selling mode and the effect of the channel power structure in the presence of platform service.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 2 February 2024

Xiongmin Tang, Zexin Zhou, Yongquan Chen, ZhiHong Lin, Miao Zhang and Xuecong Li

Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is…

Abstract

Purpose

Dielectric barrier discharge (DBD) is widely used in the treatment of skin disease, surface modification of material and other fields of electronics. The purpose of this paper is to design a high-performance power supply with a compact structure for excimer lamps in electronics application.

Design/methodology/approach

To design a high-performance power supply with a compact structure remains a challenge for excimer lamps in electronics application, a current-source type power supply in a single stage with power factor correction (PFC) is proposed. It consists of an excitation voltage generation unit and a PFC unit. By planning the modes of the excitation voltage generation unit, a bipolar pulse excitation voltage with a high rising and falling rate is generated. And a high power factor (PF) on the AC side is achieved by the interaction of a non-controlled rectifier and two inductors.

Findings

The experimental results show that not only a high-frequency and high-voltage bipolar pulse excitation voltage with a high average rising and falling rate (7.51GV/s) is generated, but also a high PF (0.992) and a low total harmonic distortion (5.54%) is obtained. Besides, the soft-switching of all power switches is realized. Compared with the sinusoidal excitation power supply and the current-source power supply, the proposed power supply in this paper can take advantage of the potential of excimer lamps.

Originality/value

A new high-performance power supply with a compact structure for DBD type excimer lamps is proposed. The proposed power supply can work stably in a wide range of frequencies, and the smooth regulation of the discharge power of the excimer lamp can be achieved by changing the switching frequency. The ideal excitation can be generated, and the soft switching can be realized. These features make this power supply a key player in the outstanding performance of the DBD excimer lamps application.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 21 March 2023

Manikandan R. and Raja Singh R.

The purpose of this paper is to prevent the destruction of other parts of a wind energy conversion system because of faults, the diagnosis of insulated-gate bipolar transistor…

Abstract

Purpose

The purpose of this paper is to prevent the destruction of other parts of a wind energy conversion system because of faults, the diagnosis of insulated-gate bipolar transistor (IGBT) faults has become an essential topic of study. Demand for sustainable energy sources has been prompted by rising environmental pollution and energy requirements. Renewable energy has been identified as a viable substitute for conventional fossil fuel energy generation. Because of its rapid installation time and adaptable expenditure for construction scale, wind energy has emerged as a great energy resource. Power converter failure is particularly significant for the reliable operation of wind power conversion systems because it not only has a high yearly fault rate but also a prolonged downtime. The power converters will continue to operate even after the failure, especially the open-circuit fault, endangering their other parts and impairing their functionality.

Design/methodology/approach

The most widely used signal processing methods for locating open-switch faults in power devices are the short-time Fourier transform and wavelet transform (WT) – based on time–frequency analysis. To increase their effectiveness, these methods necessitate the intensive use of computational resources. This study suggests a fault detection technique using empirical mode decomposition (EMD) that examines the phase currents from a power inverter. Furthermore, the intrinsic mode function’s relative energy entropy (REE) and simple logical operations are used to locate IGBT open switch failures.

Findings

The presented scheme successfully locates and detects 21 various classes of IGBT faults that could arise in a two-level three-phase voltage source inverter (VSI). To verify the efficacy of the proposed fault diagnosis (FD) scheme, the test is performed under various operating conditions of the power converter and induction motor load. The proposed method outperforms existing FD schemes in the literature in terms of fault coverage and robustness.

Originality/value

This study introduces an EMD–IMF–REE-based FD method for VSIs in wind turbine systems, which enhances the effectiveness and robustness of the FD method.

Article
Publication date: 28 December 2023

Yadong Dou, Xiaolong Zhang and Ling Chen

The coal-fired power plants have been confronted with new operation challenge since the unified carbon trading market was launched in China. To make the optimal decision for the…

Abstract

Purpose

The coal-fired power plants have been confronted with new operation challenge since the unified carbon trading market was launched in China. To make the optimal decision for the carbon emissions and power production has already been an important subject for the plants. Most of the previous studies only considered the market prices of electricity and coal to optimize the generation plan. However, with the opening of the carbon trading market, carbon emission has become a restrictive factor for power generation. By introducing the carbon-reduction target in the production decision, this study aims to achieve both the environmental and economic benefits for the coal-fired power plants to positively deal with the operational pressure.

Design/methodology/approach

A dynamic optimization approach with both long- and short-term decisions was proposed in this study to control the carbon emissions and power production. First, the operation rules of carbon, electricity and coal markets are analyzed, and a two-step decision-making algorithm for annual and weekly production is presented. Second, a production profit model based on engineering constraints is established, and a greedy heuristics algorithm is applied in the Gurobi solver to obtain the amounts of weekly carbon emission, power generation and coal purchasing. Finally, an example analysis is carried out with five generators of a coal-fired power plant for illustration.

Findings

The results show that the joint information of the multiple markets of carbon, electricity and coal determines the real profitability of power production, which can assist the plants to optimize their production and increase the profits. The case analyses demonstrate that the carbon emission is reduced by 2.89% according to the authors’ method, while the annual profit is improved by 1.55%.

Practical implications

As an important power producer and high carbon emitter, coal-fired power plants should actively participate in the carbon market. Rather than trade blindly at the end of the agreement period, they should deeply associate the prices of carbon, electricity and coal together and realize optimal management of carbon emission and production decision efficiently.

Originality/value

This paper offers an effective method for the coal-fired power plant, which is struggling to survive, to manage its carbon emission and power production optimally.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 26 September 2023

Dangshu Wang, Xuan Deng, Zhimin Guan, Shulin Liu, Yaqiang Yang and Xinxia Wang

To simplify the circuit design and control complexity of the magnetic coupling resonant wireless charging system, the radio energy transmission constant current and constant…

59

Abstract

Purpose

To simplify the circuit design and control complexity of the magnetic coupling resonant wireless charging system, the radio energy transmission constant current and constant voltage charging is realized.

Design/methodology/approach

The purpose of this study is to simplify the circuit design and control complexity of the magnetic coupling resonance wireless charging system, in order to achieve constant current and constant voltage charging for wireless energy transmission. First, the principle of LCC/S-S compensation structure is analyzed, and the equivalent mathematical model is established; then, the system characteristics under constant current and constant voltage mode are analyzed, and the design method of system parameters is given; finally, a simulation and experimental system is built to verify the correctness and feasibility of the theoretical analysis.

Findings

The results show that the proposed hybrid topology can achieve a constant current output of 2 A and a constant voltage output of 30 V under variable load conditions, and effectively suppress the current distortion problem under light load conditions. The waveform distortion rate of the inverter current is reduced from 33.97% to 10.45%.

Originality/value

By changing the high-order impedance characteristics of the compensation structure, the distortion of the current waveform under light load is suppressed, and the overall stability and efficiency of the system are improved.

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 February 2023

Olayinka Moses, Dimu Ehalaiye, Matthew Sorola and Philippe Lassou

The purpose of this study is to examine the Nigerian Extractive Industry Transparency Initiative’s (NEITI) ineffectiveness in delivering public accountability to Nigerian…

Abstract

Purpose

The purpose of this study is to examine the Nigerian Extractive Industry Transparency Initiative’s (NEITI) ineffectiveness in delivering public accountability to Nigerian citizens. Although this failure is recognised in prior literature, the authors contend that NEITI’s role is obscured by one-sided links to external factors.

Design/methodology/approach

The conceptual framework presented in this study is built around Dillard and Vinnari’s (2019) distinction between different accountability systems and Brown and Dillard’s (2020) complimentary insights on the technologies of hubris and humility. The analytical framework draws from Grant and Keohane’s (2005) modes of accountability, which the authors use to articulate conflicting accountability demands (to-whom and for-what) of NEITI’s operating relationships. Combined, the authors analyse official documents, media, reports and interview responses from members of NEITI’s National Stakeholders Working Group.

Findings

This study surfaces a variety of intersecting interests across NEITI’s operational relationships. Some of these interests are mutually beneficial like that of Donors and the Extractive Industries Transparency Initiative. Others run counter to each other, such as NEITI’s relationship to the Presidency which illustrates a key source of NEITI’s ineffectiveness. In discussing these interests, the authors articulate their connection to NEITI’s design as an accountability system and its embedded limitations.

Originality/value

The authors provide incremental understanding of prior insight regarding NEITI’s ineffectiveness by drawing attention to its fundamental design as an accountability system and its failure to deliver public accountability. To illuminate these failures, the authors also map NEITI’s competing accountability demands – the nexus of accountability – to demonstrate the complex socio-political reality within which NEITI is expected to operate. The authors posit that NEITI’s ineffectiveness has as much to do with NEITI itself, as it does with external factors like the quality of information disclosed and the unique Nigerian context.

Details

Meditari Accountancy Research, vol. 32 no. 1
Type: Research Article
ISSN: 2049-372X

Keywords

Article
Publication date: 19 March 2024

Naseer Khan, Zeeshan Gohar, Faisal Khan and Faisal Mehmood

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and…

Abstract

Purpose

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and environment-friendly energy sources. This paper presents the analysis of a photovoltaic (PV) with an adaptive neuro-fuzzy inference system (ANFIS) algorithm, solid oxide fuel cell (SOFC) and a battery storage scheme incorporated for EV CS in a stand-alone mode. In previous studies, either the hydrogen fuel of SOFC or the irradiance is controlled using artificial neural network. These parameters are not controlled simultaneously using an ANFIS-based approach. The ANFIS-based stand-alone hybrid system controlling both the fuel flow of SOFC and the irradiance of PV is discussed in this paper.

Design/methodology/approach

The ANFIS algorithm provides an efficient estimation of maximum power (MP) to the nonlinear voltage–current characteristics of a PV, integrated with a direct current–direct current (DC–DC) converter to boost output voltage up to 400 V. The issue of fuel starvation in SOFC due to load transients is also mitigated using an ANFIS-based fuel flow regulator, which robustly provides fuel, i.e. hydrogen per necessity. Furthermore, to ensure uninterrupted power to the CS, PV is integrated with a SOFC array, and a battery storage bank is used as a backup in the current scenario. A power management system efficiently shares power among the aforesaid sources.

Findings

A comprehensive simulation test bed for a stand-alone power system (PV cells and SOFC) is developed in MATLAB/Simulink. The adaptability and robustness of the proposed control paradigm are investigated through simulation results in a stand-alone hybrid power system test bed.

Originality/value

The simulation results confirm the effectiveness of the ANFIS algorithm in a stand-alone hybrid power system scheme.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 3000