Search results

1 – 10 of over 7000
Article
Publication date: 20 October 2014

Karel Kellens, Renaldi Renaldi, Wim Dewulf, Jean-pierre Kruth and Joost R. Duflou

This paper aims to present parametric models to estimate the environmental footprint of the selective laser sintering (SLS)’ production phase, covering energy and resource…

1973

Abstract

Purpose

This paper aims to present parametric models to estimate the environmental footprint of the selective laser sintering (SLS)’ production phase, covering energy and resource consumption as well as process emissions. Additive manufacturing processes such as (SLS) are often considered to be more sustainable then conventional manufacturing methods. However, quantitative analyses of the environmental impact of these processes are still limited and mainly focus on energy consumption.

Design/methodology/approach

The required Life Cycle Inventory data are collected using the CO2PE! – Methodology, including time, power, consumables and emission studies. Multiple linear regression analyses have been applied to investigate the interrelationships between product design features on the one hand and production time (energy and resource consumption) on the other hand.

Findings

The proposed parametric process models provide accurate estimations of the environmental footprint of SLS processes based on two design features, build height and volume, and help to identify and quantify measures for significant impact reduction of both involved products and the supporting machine tools.

Practical implications

The gained environmental insight can be used as input for ecodesign activities, as well as environmental comparison of alternative manufacturing process plans.

Originality/value

This article aims to overcome the current lack of environmental impact models, covering energy and resource consumption as well as process emissions for SLS processes.

Article
Publication date: 1 November 1986

E. Bodnar and Paul Taylor

More than two decades after their frist start the thermosetting powder coatings became in 1985 a technically viable product and a commercial success. Powder coatings are 100% dry…

Abstract

More than two decades after their frist start the thermosetting powder coatings became in 1985 a technically viable product and a commercial success. Powder coatings are 100% dry paints that contain no solvents. They are generally applied to metal substrates by means of electrostatic spray equipment that provides each powder particle with a small electric charge, which in turn makes it stick to the substrate. The coated objects then go into a high temperature oven (usualy 150 to 200°C), where the powder coating melts and reacts chemically while sintering together to a continuous smooth finish of a thermoset film.

Details

Pigment & Resin Technology, vol. 15 no. 11
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 January 1955

A.G. Thomson

A SYMPOSIUM on Powder Metallurgy, organized by the Iron and Steel Institute in association with the Institute of Metals, took place in the Hoare Memorial Hall. Church House…

Abstract

A SYMPOSIUM on Powder Metallurgy, organized by the Iron and Steel Institute in association with the Institute of Metals, took place in the Hoare Memorial Hall. Church House, Westminster, early in December.

Details

Aircraft Engineering and Aerospace Technology, vol. 27 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 June 2000

B. Engel and D.L. Bourell

Selective laser sintering (SLS) is a solid freeform fabrication process whereby a part is built layerwise by scanning a powder bed. The processability of metal powder varies…

2135

Abstract

Selective laser sintering (SLS) is a solid freeform fabrication process whereby a part is built layerwise by scanning a powder bed. The processability of metal powder varies depending on the state of the powder prior to SLS. A powder thermal pre‐treatment was developed which involved degassing the powder at an elevated temperature in a vacuum. Without powder thermal pre‐treatment, the powder may flow poorly and may “ball” or form molten clumps during the laser exposure rather than wetting into the present and previous layer. These effects result in SLS parts with poor surface finish, mechanical properties and density. The purpose of this study was to identify for titanium alloy powder the mechanisms responsible for the improvements obtained after powder thermal pre‐treatment and to optimize the thermal excursion.

Details

Rapid Prototyping Journal, vol. 6 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2024

Asif Ur Rehman, Pedro Navarrete-Segado, Metin U. Salamci, Christine Frances, Mallorie Tourbin and David Grossin

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective…

Abstract

Purpose

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective laser sintering (SLS), a dynamic three-dimensional computational model was developed to forecast thermal behavior of hydroxyapatite (HA) bioceramic.

Design/methodology/approach

AM has revolutionized automotive, biomedical and aerospace industries, among many others. AM provides design and geometric freedom, rapid product customization and manufacturing flexibility through its layer-by-layer technique. However, a very limited number of materials are printable because of rapid melting and solidification hysteresis. Melting-solidification dynamics in powder bed fusion are usually correlated with welding, often ignoring the intrinsic properties of the laser irradiation; unsurprisingly, the printable materials are mostly the well-known weldable materials.

Findings

The consolidation mechanism of HA was identified during its processing in a ceramic SLS device, then the effect of the laser energy density was studied to see how it affects the processing window. Premature sintering and sintering regimes were revealed and elaborated in detail. The full consolidation beyond sintering was also revealed along with its interaction to baseplate.

Originality/value

These findings provide important insight into the consolidation mechanism of HA ceramics, which will be the cornerstone for extending the range of materials in laser powder bed fusion of ceramics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 July 2023

Ceren Mutlu

The aim of this study was to produce an enriched honey powder with active compounds coming from bee pollen and investigate the effects of bee pollen addition as a carrier material…

Abstract

Purpose

The aim of this study was to produce an enriched honey powder with active compounds coming from bee pollen and investigate the effects of bee pollen addition as a carrier material on honey powder.

Design/methodology/approach

The effects of bee pollen addition as carrier material in corporation with gum arabic at different ratios (25, 50 and 75% of total carrier material amount) on vacuum-dried honey-bee pollen powder were investigated.

Findings

The bee pollen concentration raise in the mixture increased the particle size, total phenolic, flavonoid and sugar contents and antioxidant activity, whereas decreased the Hauser ratio and Carr index values, hygroscopicity and solubility of enriched honey powder samples. The honey powder samples had passable and poor flow properties and very hygroscopic (>20%) structure because of the high sugar content. The phenolic and flavonoid contents of honey powder samples with bee pollen changed between 1531.59 and 3796.00 mg GAE/kg and 424.05–1203.10 mg QE/kg, respectively, and these values were much higher than the control sample. On the basis of linear correlation analysis, there was a very high positive correlation between total phenolic, flavonoid and antioxidant activity, while there was a very high negative correlation between these parameters and solubility.

Originality/value

The study evaluated that enriching of honey powders with pollen, which is a product of both plant and bee origin, rather than enriching with different plant and animal sources has an innovative approach. Additionally, the usage of bee pollen as a carrier agent in food drying has not been previously reported in any study.

Details

British Food Journal, vol. 125 no. 10
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 17 August 2020

Juan Sebastian Gomez Bonilla, Maximilian Alexander Dechet, Jochen Schmidt, Wolfgang Peukert and Andreas Bück

The purpose of this paper is to investigate the effect of different heating approaches during thermal rounding of polymer powders on powder bulk properties such as particle size…

Abstract

Purpose

The purpose of this paper is to investigate the effect of different heating approaches during thermal rounding of polymer powders on powder bulk properties such as particle size, shape and flowability, as well as on the yield of process.

Design/methodology/approach

This study focuses on the rounding of commercial high-density polyethylene polymer particles in two different downer reactor designs using heated walls (indirect heating) and preheated carrier gas (direct heating). Powder bulk properties of the product obtained from both designs are characterized and compared.

Findings

Particle rounding with direct heating leads to a considerable increase in process yield and a reduction in powder agglomeration compared to the design with indirect heating. This subsequently leads to higher powder flowability. In terms of shape, indirect heating yields not only particles with higher sphericity but also entails substantial agglomeration of the rounded particles.

Originality/value

Shape modification via thermal rounding is the decisive step for the success of a top-down process chain for selective laser sintering powders with excellent flowability, starting with polymer particles from comminution. This report provides new information on the influence of the heating mode (direct/indirect) on the performance of the rounding process and particle properties.

Details

Rapid Prototyping Journal, vol. 26 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 August 2022

Quoc-Duy Nguyen, Thi-Dung Vu, Thuy-Trang Nguyen, Thi-Kieu-Vi Phan, Hieu-Thao Pham and Phuong-Thao Nguyen

This study aims to investigate the effect of spray drying temperature and maltodextrin addition on the contents of phenolics, flavonoids, anthocyanins and antioxidant activities…

Abstract

Purpose

This study aims to investigate the effect of spray drying temperature and maltodextrin addition on the contents of phenolics, flavonoids, anthocyanins and antioxidant activities (2,2-diphenyl-1-picrylhydrazyl [DPPH] radical scavenging activity, ferric reducing antioxidant power and reducing power) of karonda powder.

Design/methodology/approach

Over the past few decades, the demands for application of natural colorants in food production have been attracting the attention of academic research and food industry. Anthocyanins, a red pigment commonly found on plants, show high potentials in the preparation of spray-dried pigment powder. This study, therefore, was conducted using full factorial design with two factors, namely, inlet temperature (150°C and 160°C) and soluble solid concentration (10, 15 and 20°Brix) with maltodextrin as carrier to produce pigment powder from karonda, an anthocyanin-rich fruit which is native to southeast Asia.

Findings

Increasing soluble solid content from 10 to 15°Brix resulted in a 42%–57% reduction in phenolic, flavonoid and anthocyanin contents. However, when increasing the amount of maltodextrin from 15 to 20°Brix, a lower reduction (approximately 11%–19%) was observed. In samples with the same °Brix, there was no significant variation in antioxidant contents and activities, especially at high maltodextrin ratios. In addition, the reducing power of samples dried at higher temperature (160°C) was higher than that of samples dried at lower temperature. Karonda spray-dried powder showed a good positive correlation (p < 0.01) between antioxidant contents and DPPH• activity.

Originality/value

To the best of the authors’ knowledge, in this study, for the first time, the effect of spray drying conditions on the quality of karonda powder was investigated.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 October 2021

Rasiha Nefise Mutlu, Ayşe Nur Acar and Ahmet Murat Gizir

Lightweight, durable and economical materials production has gained considerable importance according to the needs of developing technology. The purpose of this paper is to…

Abstract

Purpose

Lightweight, durable and economical materials production has gained considerable importance according to the needs of developing technology. The purpose of this paper is to develop an new aluminum alloy by powder metalurgy.

Design/methodology/approach

Powder metallurgy, which provides controllably on desired end product, method was applied. Aluminum alloy was created with Al, Zn, Mg, Cu powders and 1.5% Na2[B4O5(OH)4].8H2O added. It was pressed under high pressure and sintered at 600 °C under N2 gas atmosphere. Density, hardness behaviors and thermal properties were determined. Surfaces and crystal structures of samples were characterized.

Findings

The addition of borax made easier grains coming to together, acting as binders and the AlB2 crystal phase was formed. It was also observed that MgZn2, Al2CuMg phases were formed. In this way, the pores between the particles of the material were reduced from 35% to 5% total porosity and the hardness of the material was increased 29 N/mm2 to 45 N/mm2 (Brinell Hardness, HB). The surface properties improved and the hydrophobicity of the surface (from 63° to 102° contact angle with borax) increased. Thus, the heat transfer among atoms get easier and the borax addition decreased specific heat capacity and enthalpy of aluminum–borax samples. This situation was also simulated with the heat transfer module of COMSOL. As result, the energy required reduced. In the other word, sintering process occurred at low temperature and more efficient.

Originality/value

New aluminum alloy has been created from different amounts of Zn, Mg, Cu elemental powders. In addition to literature, relationship of borax and aluminum and other alloying elements on the mechanical, thermophysical and surface properties of new obtained aluminum alloy has been investigated.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 December 2021

Omar Bashir, Syed Zameer Hussain, Tawheed Amin, Nusrat Jan, Gousia Gani, Shakeel Ahmad Bhat and Abida Jabeen

Apricots are not only nutritionally-rich but also possess pharmacological significance owing to their high antioxidant activity, and they are rich in vitamins, fibers, bioactive…

Abstract

Purpose

Apricots are not only nutritionally-rich but also possess pharmacological significance owing to their high antioxidant activity, and they are rich in vitamins, fibers, bioactive phytochemicals and minerals. Because of its immense organoleptic characteristics, apricot juice (AJ) is well accepted; however, it has a limited shelf-life, thereby demanding it to be converted into other shelf-stable form. One of the approaches is converting this juice into dehydrated powder. Amongst the various dehydration techniques available, spray drying is usually preferred; however, it involves the use of several independent variables, which need to be optimized, thus prompting to optimize the process to obtain spray dried apricot powder (SDAP) with improved quality.

Design/methodology/approach

The spray-drying process of apricot juice was done using the response surface approach. The process variables included the inlet air temperature of 135–220°C, gum arabic concentration of 4–25%, feed flow rate of 124–730 mL/h, feed total soluble solids (TSS) of 10-30°Brix and atomization speed of 11,400–28,000 rpm. The dependent responses were powder yield, hygroscopicity, solubility, moisture content, carotenoids (CT), ascorbic acid (AA), radical scavenging activity (RSA), lightness, wettability, bulk density, particle density and porosity.

Findings

Amongst all independent variables, inlet air temperature had most predominant impact on all the investigated responses. The optimum processing conditions for development of apricot powder with optimum quality were 190°C inlet air temperature, 18.99% gum arabic, 300.05 mL/h feed flow rate, 24°Brix feed TSS and 17433.41 rpm atomization speed. The experimental values were found to be in agreement with the predicted values, indicating the suitability of models in predicting optimizing responses of apricot powder. Flowability as Carr's index (CI) (22.36 ± 1.01%) suggests fair flow of powder. Glass transition temperature of powder was 57.85 ± 2.03°C, which is much higher than that of ambient, suggesting its better shelf stability.

Originality/value

To the best of author's knowledge, very limited or very few studies have been carried out on the spray-drying process for the manufacture of SDAP. The results of this investigation will open up new horizons in the field of food industry in the Union Territory of Jammu and Kashmir, India or elsewhere in the apricot-growing areas of India.

Details

British Food Journal, vol. 124 no. 11
Type: Research Article
ISSN: 0007-070X

Keywords

1 – 10 of over 7000