Search results

1 – 10 of over 3000
Article
Publication date: 17 August 2020

Juan Sebastian Gomez Bonilla, Maximilian Alexander Dechet, Jochen Schmidt, Wolfgang Peukert and Andreas Bück

The purpose of this paper is to investigate the effect of different heating approaches during thermal rounding of polymer powders on powder bulk properties such as particle size…

Abstract

Purpose

The purpose of this paper is to investigate the effect of different heating approaches during thermal rounding of polymer powders on powder bulk properties such as particle size, shape and flowability, as well as on the yield of process.

Design/methodology/approach

This study focuses on the rounding of commercial high-density polyethylene polymer particles in two different downer reactor designs using heated walls (indirect heating) and preheated carrier gas (direct heating). Powder bulk properties of the product obtained from both designs are characterized and compared.

Findings

Particle rounding with direct heating leads to a considerable increase in process yield and a reduction in powder agglomeration compared to the design with indirect heating. This subsequently leads to higher powder flowability. In terms of shape, indirect heating yields not only particles with higher sphericity but also entails substantial agglomeration of the rounded particles.

Originality/value

Shape modification via thermal rounding is the decisive step for the success of a top-down process chain for selective laser sintering powders with excellent flowability, starting with polymer particles from comminution. This report provides new information on the influence of the heating mode (direct/indirect) on the performance of the rounding process and particle properties.

Details

Rapid Prototyping Journal, vol. 26 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 July 2019

Rong Li and Jun Xiong

The purpose of this study is to present how the thermal energy transmission of circular parts produced in robotized gas metal arc (GMA)-based additive manufacturing was affected…

Abstract

Purpose

The purpose of this study is to present how the thermal energy transmission of circular parts produced in robotized gas metal arc (GMA)-based additive manufacturing was affected by the substrate shape through finite element analysis, including distributions of thermal energy and temperature gradient in the molten pool and deposited layers.

Design/methodology/approach

Three geometric shapes, namely, square, rectangle and round were chosen in simulation, and validation tests were carried out by corresponding experiments.

Findings

The thermal energy conduction ability of the deposited layers is the best on the round substrate and the worst on the rectangular substrate. The axial maximum temperature gradients in the molten pool along the deposition path with the round substrate are the largest during the deposition process. At the deposition ending moment, the circumferential temperature gradients of all layers with the round substrate are the largest. A large temperature gradient usually stands for a good heat conduction condition. Altogether, the round substrate is more suitable for the fabrication of circular thin-walled parts.

Originality/value

The predicted thermal distributions of the circular thin-walled part with various substrate shapes are helpful to understand the influence of substrate shape on the thermal energy transmission behavior in GMA-based additive manufacturing.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 March 2024

Saghar Hashemi, Amirhosein Ghaffarianhoseini, Ali Ghaffarianhoseini, Nicola Naismith and Elmira Jamei

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct…

Abstract

Purpose

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct research tailored to the specific climatic conditions of Australia and New Zealand to ensure accuracy and relevance.

Design/methodology/approach

Given population growth, urban expansions and predicted climate change, researchers should provide a deeper understanding of microclimatic conditions and outdoor thermal comfort in Australia and New Zealand. The study’s objectives can be classified into three categories: (1) to analyze previous research works on urban microclimate and outdoor thermal comfort in Australia and New Zealand; (2) to highlight the gaps in urban microclimate studies and (3) to provide a summary of recommendations for the neglected but critical aspects of urban microclimate.

Findings

The findings of this study indicate that, despite the various climate challenges in these countries, there has been limited investigation. According to the selected papers, Melbourne has the highest number of microclimatic studies among various cities. It is a significant area for past researchers to examine people’s thermal perceptions in residential areas during the summer through field measurements and surveys. An obvious gap in previous research is investigating the impacts of various urban contexts on microclimatic conditions through software simulations over the course of a year and considering the predicted future climate changes in these countries.

Originality/value

This paper aims to review existing studies in these countries, provide a foundation for future research, identify research gaps and highlight areas requiring further investigation.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 25 May 2012

Anna Laura Pisello, Xiaoqi Xu, John E. Taylor and Franco Cotana

The development of strategies for energy efficiency optimization in buildings has become a fundamental way to reduce buildings’ environmental impact because the amount of energy…

Abstract

Purpose

The development of strategies for energy efficiency optimization in buildings has become a fundamental way to reduce buildings’ environmental impact because the amount of energy consumed by buildings is responsible for one‐third of total global energy consumption. The purpose of this research is to evaluate the performance of buildings in terms of their indoor operative temperature dynamics considering the impact of other neighbouring buildings. The goal of the paper is to verify whether close spatial relationships of buildings and urban morphology within a local network of buildings could cause a considerable effect on indoor thermal behaviour.

Design/methodology/approach

The authors simulated buildings in an existing city block in Albany, New York, USA. The block consisted of six single‐family houses.

Findings

The results demonstrate that buildings mutually impact the indoor thermal behaviour of other buildings in the network with indoor operative temperature differences of over 20 percent in summer and over 40 percent in winter for the test case examined. The research also compares this result with improvements in indoor operative temperature achieved through traditional envelope improvements. It was found that during the summer, certain envelope improvement strategies have nearly the same impact in terms of indoor thermal behaviour. During winter, the presence of neighbouring buildings causes a variation that is more than double the value of the effect caused by a typical envelope modification.

Originality/value

It is concluded that this mutual impact on indoor operative temperature across spatially proximal buildings should be included in dynamic analyses of buildings. Future research should examine the effect of these indoor operative temperature deviations on the energy performance predictions of buildings in urban and quasi‐urban settings.

Details

Smart and Sustainable Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 25 December 2020

Terri Peters and Anna Halleran

The COVID-19 global health crisis is undeniably a global housing crisis. Our study focuses on quality of life in urban mid- and high-rise apartment housing, the fastest growing…

6842

Abstract

Purpose

The COVID-19 global health crisis is undeniably a global housing crisis. Our study focuses on quality of life in urban mid- and high-rise apartment housing, the fastest growing housing types in many cities around the world. This housing typology presents unique challenges relating to connection to nature, daylight and fresh air.

Design/methodology/approach

This multi-disciplinary literature review analyzes more than 100 published papers from peer-reviewed sources from environmental psychology, building science and architecture relevant to quality of life in high-rise housing, as well as more than 40 recent newspaper and magazine articles about the possible impacts of COVID-19 on housing. We identify synergies between passive design strategies and health-promoting architecture or “restorative environmental design” principles.

Findings

Post-pandemic, health-promoting apartment housing design must prioritize (1) window placement and views that support stress recovery and restoration; (2) lighting levels based on spaces that can satisfy multiple uses and users; (3) bedrooms designed for restful sleep that contribute to circadian regulation; (4) living rooms with better indoor air quality, with a focus on natural ventilation; (5) access to nature, through the purposeful design of balconies and (6) unit sizes and layouts that enable physical distancing and prevent crowding.

Originality/value

We identify new social and environmental design priorities in the form of evidence-based design principles to inform and promote healthy and restorative living environments for residents in apartment housing.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. 15 no. 1
Type: Research Article
ISSN: 2631-6862

Keywords

Article
Publication date: 1 April 1991

Three Wanson Thermopac 200 thermal fluid heaters installed at Sericol Ltd's new facility at Poor Hole Lane, Broadstairs, meet all the process heat requirements for the manufacture…

Abstract

Three Wanson Thermopac 200 thermal fluid heaters installed at Sericol Ltd's new facility at Poor Hole Lane, Broadstairs, meet all the process heat requirements for the manufacture of the company's wide range of high performance screen printing inks.

Details

Pigment & Resin Technology, vol. 20 no. 4
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 3 May 2016

Baolian Zhang, Zhenzhen Zhang, Xuening Fei, Yingchun Gu and Lu Yu

The purpose of the study reported in this paper was to prepare modified C.I. Pigment Red (PR) 170 to reduce production cost and improve application performance. The structure of…

Abstract

Purpose

The purpose of the study reported in this paper was to prepare modified C.I. Pigment Red (PR) 170 to reduce production cost and improve application performance. The structure of the modified pigment was characterised. The colour strength, thermal stability, mobility, aqueous dispersability and ultraviolet (UV) resistance of modified pigments were studied.

Design/methodology/approach

Silica fume was added into the diazonium salt solution under acidic condition, followed by the activation to generate new surface. Subsequently, coupling component was dropwise added to the system to form the modified pigments evenly on the surface of silica fume in situ. The structure and properties of the modified pigment were studied by fourier transform infrared spectoscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravity analysis (TG-DTA), UV-visible diffuse reflectance spectra (UV-Vis DRS), and commission internationale de L‘Eclairage (CIE L*a*b*) colour measurements.

Findings

The morphology and particle size of the modified pigment were controlled by the modification of the silica fume, and the organic pigment and silica fume formed a core–shell structure. The properties of the modified pigment including colour strength, thermal stability, mobility, aqueous dispensability and UV resistance were improved significantly.

Research limitations/implications

The effect of the amount of silica fume on the thickness of the organic pigment layer and the effect of the thickness of the organic pigment layer on the properties of the modified pigment need to be studied further.

Practical implications

This paper shows a feasible method of the modification of the PR170 with the silica fume, and the modification can improve the properties of the PR170. The use of silica fume to modify organic pigment can realise the reuse of solid waste and reduce the production cost of the organic pigment.

Social implications

This modification method of the organic pigment is adaptive and it can be adjusted to the modification of other species of the organic pigment.

Originality/value

The modification of the PR170 with the silica fume was carried out in its preparation process, which synchronised the preparation and modification of the organic pigment. The properties of the modified pigment were improved, which were beneficial for their application in inks and coatings.

Details

Pigment & Resin Technology, vol. 45 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 1982

Normalair‐Garrett Ltd., (Stand No. N31) part of the Westland plc Group of Yeovil, Somerset, is exhibiting a wide range of products which demonstrate the company's diverse…

Abstract

Normalair‐Garrett Ltd., (Stand No. N31) part of the Westland plc Group of Yeovil, Somerset, is exhibiting a wide range of products which demonstrate the company's diverse capabilities in control systems and precision components for the aerospace industry.

Details

Aircraft Engineering and Aerospace Technology, vol. 54 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 February 1983

Dennis Gross and Brian Waterfield

As a result of reorganisation within the Company, AVX Limited have appointed Keith France as General Manager, Sales and Marketing. Previously General Manager, Sales, Europe, Mr…

Abstract

As a result of reorganisation within the Company, AVX Limited have appointed Keith France as General Manager, Sales and Marketing. Previously General Manager, Sales, Europe, Mr France now assumes the added responsibility for the marketing of AVX products throughout Europe.

Details

Microelectronics International, vol. 1 no. 2
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 13 June 2019

Mohammad Reza Salimpour, Mohammad Hossein Karimi Darvanjooghi, Ali Abdollahi, Arash Karimipour and Marjan Goodarzi

A boiling surface with different initial roughness and under various nanoparticles volume fractions was studied in present work.

Abstract

Purpose

A boiling surface with different initial roughness and under various nanoparticles volume fractions was studied in present work.

Design/methodology/approach

Develop a correlation and sensitivity analysis.

Findings

The results showed that for small (7.3 nm) and much larger (about 2,000 nm) surface roughness, compared to nanoparticle size of around 25 nm, the heat transfer rate of nanofluid diminishes relative to that of base fluid. The results also demonstrated that the boiling heat transfer rate is reduced by increasing the concentration of nanoparticles. For larger boiling surface roughness (480 nm) and nanoparticles volume fractions of less than 0.1 Vol.%, the value of heat transfer increases with the increase of nanoparticles concentration; and for those of more than 0.1 Vol.%, heat transfer rate decreases by adding more nanoparticles, significantly.

Originality/value

Finally, an equation was presented for estimating the wall superheat and the Csf coefficient in terms of mentioned parameters.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 3000