Search results

1 – 10 of over 5000
Expert briefing
Publication date: 15 August 2022

The shortcomings of hydrogen as a green energy source.

Expert briefing
Publication date: 17 June 2022

Production offers flexibility: hydrogen can be made in multiple locations -- increasing geopolitical diversification -- using renewable electricity, nuclear power and…

Details

DOI: 10.1108/OXAN-DB270889

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 28 April 2022

Gang Wang, Zihan Wang, Yue Zhang, GuangTao Xu, MingHao Zhao and Yanmin Li

The purpose of this paper is to find a new method to evaluate the hydrogen embrittlement performance of heterogeneous materials and thin film materials.

Abstract

Purpose

The purpose of this paper is to find a new method to evaluate the hydrogen embrittlement performance of heterogeneous materials and thin film materials.

Design/methodology/approach

The changes of hydrogen embrittlement properties of steel were studied by electrochemical hydrogen charging test and scratch test. The microstructure and properties of the alloy were analyzed by hardness tester, scanning electron microscope and three-dimensional morphology. The fracture toughness before and after hydrogen charging was calculated based on the scratch method.

Findings

The results showed that the hydrogen-induced hardening phenomenon occurs in the material after hydrogen charging. The scratch depth and width increased after hydrogen charging. The fracture toughness obtained by the scratch method showed that hydrogen reduces the fracture toughness of the material. The comparison error of fracture toughness calculated by indentation method was less than 5%.

Originality/value

The results show that the scratch method can evaluate the hydrogen embrittlement performance of the material. This method provides a possibility to evaluate the hydrogen embrittlement of thin-film and heterogeneous materials.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 May 2021

Fan Bao, Kaiyu Zhang, Zhengrong Zhou, Wenli Zhang, Xiao Cai and Lin Zhang

The purpose of this paper is to demonstrate the effect of δ-ferrite on the susceptibility to hydrogen embrittlement of type 304 stainless steel in hydrogen gas environment.

Abstract

Purpose

The purpose of this paper is to demonstrate the effect of δ-ferrite on the susceptibility to hydrogen embrittlement of type 304 stainless steel in hydrogen gas environment.

Design/methodology/approach

The mechanical properties of as-received and solution-treated specimens were investigated by the test of tensile and fatigue crack growth (FCG) in 5 MPa argon and hydrogen.

Findings

The presence of δ-ferrite reduced the relative elongation and the relative reduction area (H2/Ar) of 304 stainless steel, indicating that δ-ferrite increased the susceptibility of hydrogen embrittlement in 304 stainless steel. Moreover, δ-ferrite promoted the fatigue crack initiation and propagation at the interface between δ-ferrite and austenite. The FCG tests were used to investigate the effect of δ-ferrite on the FCG rate in hydrogen gas environment, and it was found that δ-ferrite accelerated the FCG rate, which was attributed to rapid diffusion and accumulation of hydrogen around the fatigue crack tip through δ-ferrite in high-pressure hydrogen gas environment.

Originality/value

The dependence of the susceptibility to hydrogen embrittlement on δ-ferrite was first investigated in type 304 steel in hydrogen environment with high pressures, which provided the basis for the design and development of a high strength, hydrogen embrittle-resistant austenitic stainless steel.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 April 2020

Xingyang Chen, Linlin Ma, Haoping Xie, Fengting Zhao, Yufeng Ye and Lin Zhang

The purpose of this paper is to present a crack initiation mechanism of the external hydrogen effect on type 304 stainless steel, as well as on fatigue crack propagation…

Abstract

Purpose

The purpose of this paper is to present a crack initiation mechanism of the external hydrogen effect on type 304 stainless steel, as well as on fatigue crack propagation in the presence of hydrogen gas.

Design/methodology/approach

The effects of external hydrogen on hydrogen-assisted crack initiation in type 304 stainless steel were discussed by performing fatigue crack growth rate and fatigue life tests in 5 MPa argon and hydrogen.

Findings

Hydrogen can reduce the incubation period of fatigue crack initiation of smooth fatigue specimens and greatly promote the fatigue crack growth rate during the subsequent fatigue cycle. During the fatigue cycle, hydrogen invades into matrix through the intrusion and extrusion and segregates at the boundaries of α′ martensite and austenite. As the fatigue cycle increased, hydrogen-induced cracks would initiate along the slip bands. The crack initiation progress would greatly accelerate in the presence of hydrogen.

Originality/value

To the best of the authors’ knowledge, this paper is an original work carried out by the authors on the hydrogen environment embrittlement of type 304 stainless steel. The effects of external hydrogen and argon were compared to provide understanding on the hydrogen-assisted crack initiation behaviors during cycle loading.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 January 2014

Asis Sarkar

This paper aims to evaluate nine types of electrical energy generation options with regard to seven criteria. The analytic hierarchy process (AHP) was used to perform the…

Abstract

Purpose

This paper aims to evaluate nine types of electrical energy generation options with regard to seven criteria. The analytic hierarchy process (AHP) was used to perform the evaluation. The TOPSIS method was used to evaluate the best generation technology.

Design/methodology/approach

The options that were evaluated are the hydrogen combustion turbine, the hydrogen internal combustion engine, the hydrogen fuelled phosphoric acid fuel cell, the hydrogen fuelled solid oxide fuel cell, the natural gas fuelled phosphoric acid fuel cell, the natural gas fuelled solid oxide fuel cell, the natural gas turbine, the natural gas combined cycle and the natural gas internal combustion engine. The criteria used for the evaluation are CO2 emissions, NOX emissions, efficiency, capital cost, operation and maintenance costs, service life and produced electricity cost.

Findings

The results drawn from the analysis in technology wise are as follows: natural gas fuelled solid oxide fuel cells>natural gas combined cycle>natural gas fuelled phosphoric acid fuel cells>natural gas internal combustion engine>hydrogen fuelled solid oxide fuel cells>hydrogen internal combustion engines>hydrogen combustion turbines>hydrogen fuelled phosphoric acid fuel cells> and natural gas turbine. It shows that the natural gas fuelled solid oxide fuel cells are the best technology available among all the available technology considering the seven criteria such as service life, electricity cost, O&M costs, capital cost, NOX emissions, CO2 emissions and efficiency of the plant.

Research limitations/implications

The most dominant electricity generation technology proved to be the natural gas fuelled solid oxide fuel cells which ranked in the first place among nine alternatives. The research is helpful to evaluate the different alternatives.

Practical implications

The research is helpful to evaluate the different alternatives and can be extended in all the spares of technologies.

Originality/value

The research was the original one. Nine energy generation options were evaluated with regard to seven criteria. The energy generation options were the hydrogen combustion turbine, the hydrogen internal combustion engine, the hydrogen fuelled phosphoric acid fuel cell, the hydrogen fuelled solid oxide fuel cell, the natural gas fuelled phosphoric acid fuel cell, the natural gas fuelled solid oxide fuel cell, the natural gas turbine, the natural gas combined cycle and the natural gas internal combustion engine. The criteria used for the evaluation were efficiency, CO2 emissions, NOX emissions, capital cost, O&M costs, electricity cost and service life.

Details

International Journal of Quality & Reliability Management, vol. 31 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 27 May 2020

S.W. Cai, Y. Zong, T.S. Hua and R.G. Song

This paper aims to verify the inhibition of the hydrogen permeation effect of the coating and to quantitatively and qualitatively characterize the coating-induced stress.

Abstract

Purpose

This paper aims to verify the inhibition of the hydrogen permeation effect of the coating and to quantitatively and qualitatively characterize the coating-induced stress.

Design/methodology/approach

By means of slow strain rate tensile testing (SSRT) in humid air, thickness measurement, fracture morphology, cross-section morphology and surface morphology, hydrogen content measurements, flow stress difference method.

Findings

The results demonstrate that the mechanism of the inhibition of hydrogen embrittlement by the coating is mainly attributed to the repression of hydrogen permeation and the additional coating-induced compressive stress.

Originality/value

It is proven that the micro-arc oxidation (MAO) coating does inhibit hydrogen entry into the alloy, and the stress induced by the MAO coating is compressive stress, which can restrain the hydrogen embrittlement of the alloy. Therefore, the mechanism of the inhibition of hydrogen embrittlement is dominated by the mechanisms of both hydrogen permeation inhibition and coating-induced stress.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 September 2022

Dinesh R., Stanly Jones Retnam, Dev Anand M. and Edwin Raja Dhas J.

The demand for energy is increasing massively due to urbanization and industrialization. Due to the massive usage of diesel engines in the transportation sector, global…

Abstract

Purpose

The demand for energy is increasing massively due to urbanization and industrialization. Due to the massive usage of diesel engines in the transportation sector, global warming is increasing rapidly. The purpose of this paper is to use hydrogen as the potential alternative for diesel engine.

Design/methodology/approach

A series of tests conducted in the twin cylinder four stroke diesel engine at various engine speeds. In addition to the hydrogen, the ultrasonication is applied to add the nanoparticles to the neat diesel. The role of nanoparticles on engine performance is effective owing to its physicochemical properties. Here, neat diesel mixed 30% of biodiesel along with the hydrogen at the concentration of 10%, 20% and 30% and 50 ppm of graphite oxide to form the blends DNH10, DNH20 and DNH30.

Findings

Inclusion of both hydrogen and nanoparticles increases the brake power and brake thermal efficiency (BTE) of the engine with relatively less fuel consumption. Compared to all blends, the maximum BTE of 33.3% has been reported by 30% hydrogen-based fuel. On the contrary, the production of the pollutants also reduces as the hydrogen concentration increases.

Originality/value

Majority of the pollutants such as carbon monoxide, carbon dioxide and hydrocarbon were dropped massively compared to diesel. On the contrary, there is no reduction in nitrogen of oxides (NOx). Highest production of NOx was witnessed for 30% hydrogen fuel due to the premixed combustion phase and cylinder temperatures.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Expert briefing
Publication date: 20 July 2022

It intends to produce up to 11 million tonnes of ‘blue ammonia’ annually by 2030, using 'blue' hydrogen made from natural gas but with mitigated carbon impacts. The target…

Article
Publication date: 15 August 2022

Jiale Yang, Xianfeng Chen, Chuyuan Huang and Tianming Ma

With the acceleration of global energy structure transformation, hydrogen has been widely used for its non-pollution and high efficiency, and hydrogen detection is used to…

Abstract

Purpose

With the acceleration of global energy structure transformation, hydrogen has been widely used for its non-pollution and high efficiency, and hydrogen detection is used to guarantee the hydrogen safety. The purpose of this paper is to study the research foundation, trend and hotspots of hydrogen detection field.

Design/methodology/approach

A total of 4,076 literature records from 2000 to 2021 were retrieved from the core collection of the Web of Science database selected as data sources. The literature information mining was realized by using CiteSpace software. Bibliometrics was used to analyze information, such as keywords, authors, journals, institutions, countries and cited references, and to track research hotspots.

Findings

Since the 21st century, the number of publications in the hydrogen detection field has been in a stable stepped uptrend. In terms of research foundation, the hotspots such as core-shell structures, nano-hybrid materials and optical fiber hydrogen sensors have been studied extensively. In combination with the discipline structure and research frontier, the selectivity, sensitivity, response speed and other performance parameters of hydrogen sensors need further improvement. The establishment of an interdisciplinary knowledge system centered on materials science and electronic science will become a long-term trend in the research of hydrogen detection.

Originality/value

This study presents an overview of research status, hotspots and laws in hydrogen detection field, through the quantitative analysis of much literature in the field and the use of data mining, so as to provide credible references for the research of hydrogen detection technology.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 5000