Search results

1 – 10 of 226
Open Access
Article
Publication date: 9 February 2024

Martin Novák, Berenika Hausnerova, Vladimir Pata and Daniel Sanetrnik

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass…

Abstract

Purpose

This study aims to enhance merging of additive manufacturing (AM) techniques with powder injection molding (PIM). In this way, the prototypes could be 3D-printed and mass production implemented using PIM. Thus, the surface properties and mechanical performance of parts produced using powder/polymer binder feedstocks [material extrusion (MEX) and PIM] were investigated and compared with powder manufacturing based on direct metal laser sintering (DMLS).

Design/methodology/approach

PIM parts were manufactured from 17-4PH stainless steel PIM-quality powder and powder intended for powder bed fusion compounded with a recently developed environmentally benign binder. Rheological data obtained at the relevant temperatures were used to set up the process parameters of injection molding. The tensile and yield strengths as well as the strain at break were determined for PIM sintered parts and compared to those produced using MEX and DMLS. Surface properties were evaluated through a 3D scanner and analyzed with advanced statistical tools.

Findings

Advanced statistical analyses of the surface properties showed the proximity between the surfaces created via PIM and MEX. The tensile and yield strengths, as well as the strain at break, suggested that DMLS provides sintered samples with the highest strength and ductility; however, PIM parts made from environmentally benign feedstock may successfully compete with this manufacturing route.

Originality/value

This study addresses the issues connected to the merging of two environmentally efficient processing routes. The literature survey included has shown that there is so far no study comparing AM and PIM techniques systematically on the fixed part shape and dimensions using advanced statistical tools to derive the proximity of the investigated processing routes.

Article
Publication date: 20 December 2023

Jibing Chen, Shisen Huang, Nan Chen, Chengze Yu, Shanji Yu, Bowen Liu, Maohui Hu and Ruidi Li

This paper aims to identify the optimal forming angle for the selective laser melting (SLM) process and evaluate the mechanical properties of the SLM-formed GH3536 alloy in the…

Abstract

Purpose

This paper aims to identify the optimal forming angle for the selective laser melting (SLM) process and evaluate the mechanical properties of the SLM-formed GH3536 alloy in the aero-engine field.

Design/methodology/approach

Forming the samples with optimized parameters and analyzing the microstructure and properties of the block samples in different forming angles with scanning electron microscope, XRD, etc. so as to analyze and reveal the laws and mechanism of the block samples in different forming angles by SLM.

Findings

There are few cracks on the construction surface of SLM formed samples, and the microstructure shows columnar subgrains and cellular subgrains. The segregation of metal elements was not observed in the microstructure. The pattern shows strong texture strength on the (111) crystal plane. In the sample, the tensile strength of 60° sample is the highest, the plasticity of 90° forming sample is the best, the comprehensive property of 45° sample is the best and the fracture mode is plastic fracture. The comprehensive performance of the part is the best under the forming angle of 45°. To ensure the part size, performance and support structure processing, additional dimensions are added to the part structure.

Originality/value

In this paper, how to make samples with different forming angles is described. Combined with the standard of forged GH3536 alloy, the microstructure and properties of the samples are analyzed, and the optimal forming angle is obtained.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 22 January 2024

Cong Liu, Yanguo Yin and Rongrong Li

This study aims to investigate the effects of ball–material ratio on the properties of mixed powders and Cu-Bi self-lubricating alloy materials.

Abstract

Purpose

This study aims to investigate the effects of ball–material ratio on the properties of mixed powders and Cu-Bi self-lubricating alloy materials.

Design/methodology/approach

Cu-Bi mixed powder was ball milled at different ball–material ratios, and the preparation of Cu-Bi alloy materials was achieved through powder metallurgy technology. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy were conducted to study the microstructure and phase composition of the mixed powder. The apparent density and flow characteristics of mixed powders were investigated using a Hall flowmeter. Tests on the crushing strength, impact toughness and tribological properties of self-lubricating alloy materials were conducted using a universal electronic testing machine, 300 J pendulum impact testing machine and M200 ring-block tribometer, respectively.

Findings

With the increase in ball–material ratio, the spherical copper matrix particles in the mixed powder became lamellar, the mechanical properties of the material gradually reduced, the friction coefficient of the material first decreased and then stabilized and the wear rate decreased initially and then increased. The increase in the ball–material ratio resulted in the fine network distribution of the Bi phase in the copper alloy matrix, which benefitted its enrichment on the worn surface for the formation a lubricating film and improvement of the material’s tribological performance. However, a large ball–material ratio can excessively weaken the mechanical properties of the material and reduce its wear resistance.

Originality/value

The effects of ball–material ratio on Cu-Bi mixed powder and material properties were clarified. This work provides a reference for the mechanical alloying process and its engineering applications.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2024

Asif Ur Rehman, Pedro Navarrete-Segado, Metin U. Salamci, Christine Frances, Mallorie Tourbin and David Grossin

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective…

Abstract

Purpose

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective laser sintering (SLS), a dynamic three-dimensional computational model was developed to forecast thermal behavior of hydroxyapatite (HA) bioceramic.

Design/methodology/approach

AM has revolutionized automotive, biomedical and aerospace industries, among many others. AM provides design and geometric freedom, rapid product customization and manufacturing flexibility through its layer-by-layer technique. However, a very limited number of materials are printable because of rapid melting and solidification hysteresis. Melting-solidification dynamics in powder bed fusion are usually correlated with welding, often ignoring the intrinsic properties of the laser irradiation; unsurprisingly, the printable materials are mostly the well-known weldable materials.

Findings

The consolidation mechanism of HA was identified during its processing in a ceramic SLS device, then the effect of the laser energy density was studied to see how it affects the processing window. Premature sintering and sintering regimes were revealed and elaborated in detail. The full consolidation beyond sintering was also revealed along with its interaction to baseplate.

Originality/value

These findings provide important insight into the consolidation mechanism of HA ceramics, which will be the cornerstone for extending the range of materials in laser powder bed fusion of ceramics.

Article
Publication date: 8 March 2022

Md Mehedi Hasan Rubel, Syed Rashedul Islam, Abeer Alassod, Amjad Farooq, Xiaolin Shen, Taosif Ahmed, Mohammad Mamunur Rashid and Afshan Zareen

The main purpose of this study was to prepare the cotton fibers and cellulose powder by a layer of nano-crystalline-titanium dioxide (TiO2) using the sol-gel sono-synthesis method…

Abstract

Purpose

The main purpose of this study was to prepare the cotton fibers and cellulose powder by a layer of nano-crystalline-titanium dioxide (TiO2) using the sol-gel sono-synthesis method to clean the wastewater containing reactive dye. Moreover, TiO2 nano-materials are remarkable due to their photoactive properties and valuable applications in wastewater treatment.

Design/methodology/approach

In this research, TiO2 was synthesized and deposited effectively on cotton fibers and cellulose powder using ultrasound-assisted coating. Further, tetra butyl titanate was used as a precursor to the synthesis of TiO2 nanoparticles. Reactive dye (red 195) was used in this study. X-ray Diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy were performed to prove the aptitude for the formation of crystal TiO2 on the cotton fibers and cellulose powder along with TiO2 nanoparticles as well as to analyze the chemical structure. Decoloration of the wastewater was investigated through ultraviolet (UV-Visible) light at 30 min.

Findings

The experimental results revealed that the decolorization was completed at 2.0 min with the cellulose nano TiO2 treatment whereas cotton nano TiO2 treated solution contained reactive dyestuffs even after the treatment of 2 min. This was the fastest method up to now than all reported methods for sustainable decolorization of wastewater by absorption. Furthermore, this study explored that the cellulose TiO2 nano-composite was more effective than the cotton TiO2 nano-composite of decoloration wastewater for the eco-friendly remedy.

Research limitations/implications

Cotton fibers and cellulose powder with nano-TiO2, and only reactive dye (red 195) were tested.

Practical implications

With reactive dye-containing wastewater, it seems to be easier to get rid of the dye than to retain it, especially from dyeing of yarn, fabric, apparel, and as well as other sectors where dyestuffs are used.

Social implications

This research would help to reduce pollution in the environment as well as save energy and cost.

Originality/value

Decoloration of wastewater treatment is an essential new track with nano-crystalline TiO2 to fast and efficient cleaning of reactive dyes containing wastewater used as a raw material.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 15 December 2023

Mohamed Ahmed Omrane, Raphaël Côté and Vincent Demers

The purpose of this study is to determine the material extrusion (MEX) printability envelope of a new kind of low-viscosity powder-binder feedstocks using rheological properties.

Abstract

Purpose

The purpose of this study is to determine the material extrusion (MEX) printability envelope of a new kind of low-viscosity powder-binder feedstocks using rheological properties.

Design/methodology/approach

Formulation of 13 feedstocks (variation of solid loading 60–67 Vol.% and thickening agent proportion 3–15 Vol.%) that were characterized and printed at different temperatures.

Findings

Three rheological models were successfully used to define the viscosity envelope, producing stable and defect-free printing. At a shear deformation rate experienced by the feedstock in the nozzle ranging from 100 to 300 s–1, it was confirmed that metal injection molding (MIM) feedstocks exhibiting a low viscosity between 100 and 150 Pa s could be printed using an extrusion temperature as low as 85 °C.

Practical implications

MEX can be used in synergy with MIM to accelerate mold development for a new injected part or simply as a replacement for MIM when the cost of the mold becomes too high for very small production volumes.

Originality/value

Correlation between the rheological properties of this new generation of low-viscosity feedstocks and MEX printability has been demonstrated for the first time.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 December 2023

Mehran Ghasempour-Mouziraji, Daniel Afonso, Saman Hosseinzadeh, Constantinos Goulas, Mojtaba Najafizadeh, Morteza Hosseinzadeh, D.D. Ganji and Ricardo Alves de Sousa

The purpose of this paper is to assess the feasibility of analytical models, specifically the radial basis function method, Akbari–Ganji method and Gaussian method, in conjunction…

Abstract

Purpose

The purpose of this paper is to assess the feasibility of analytical models, specifically the radial basis function method, Akbari–Ganji method and Gaussian method, in conjunction with the finite element method. The aim is to examine the impact of processing parameters on temperature history.

Design/methodology/approach

Through analytical investigation and finite element simulation, this research examines the influence of processing parameters on temperature history. Simufact software with a thermomechanical approach was used for finite element simulation, while radial basis function, Akbari–Ganji and Gaussian methods were used for analytical modeling to solve the heat transfer differential equation.

Findings

The accuracy of both finite element and analytical methods was validated with about 90%. The findings revealed direct relationships between thermal conductivity (from 100 to 200), laser power (from 400 to 800 W), heat source depth (from 0.35 to 0.75) and power absorption coefficient (from 0.4 to 0.8). Increasing the values of these parameters led to higher temperature history. On the other hand, density (from 7,600 to 8,200), emission coefficient (from 0.5 to 0.7) and convective heat transfer (from 35 to 90) exhibited an inverse relationship with temperature history.

Originality/value

The application of analytical modeling, particularly the utilization of the Akbari–Ganji, radial basis functions and Gaussian methods, showcases an innovative approach to studying directed energy deposition. This analytical investigation offers an alternative to relying solely on experimental procedures, potentially saving time and resources in the optimization of DED processes.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 December 2023

İdris Tuğrul Gülenç, Mingwen Bai, Ria L. Mitchell, Iain Todd and Beverley J. Inkson

Current methods for the preparation of composite powder feedstock for selective laser melting (SLM) rely on costly nanoparticles or yield inconsistent powder morphology. This…

Abstract

Purpose

Current methods for the preparation of composite powder feedstock for selective laser melting (SLM) rely on costly nanoparticles or yield inconsistent powder morphology. This study aims to develop a cost-effective Ti6Al4V-carbon feedstock, which preserves the parent Ti6Al4V particle’s flowability, and produces in situ TiC-reinforced Ti6Al4V composites with superior traits.

Design/methodology/approach

Ti6Al4V particles were directly mixed with graphite flakes in a planetary ball mill. This composite powder feedstock was used to manufacture in situ TiC-Ti6Al4V composites using various energy densities. Relative porosity, microstructure and hardness of the composites were evaluated for different SLM processing parameters.

Findings

Homogeneously carbon-coated Ti6Al4V particles were produced by direct mixing. After SLM processing, in situ grown 100–500 nm size TiC nanoparticles were distributed within the α-martensite Ti6Al4V matrix. The formation of TiC particles refines the Ti6Al4V β grain size. Relative density varied between 96.4% and 99.5% depending on the processing parameters. Hatch distance, exposure time and point distance were all effective on relative porosity change, whereas only exposure time and point distance were effective on hardness change.

Originality/value

This work introduces a novel, cost-effective powder feedstock preparation method for SLM manufacture of Ti6Al4V-TiC composites. The in situ SLM composites achieved in this study have high relative density values, well-dispersed TiC nanoparticles and increased hardness. In addition, the feedstock preparation method can be readily adapted for various matrix and reinforcement materials in future studies.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 August 2022

Quoc-Duy Nguyen, Thi-Dung Vu, Thuy-Trang Nguyen, Thi-Kieu-Vi Phan, Hieu-Thao Pham and Phuong-Thao Nguyen

This study aims to investigate the effect of spray drying temperature and maltodextrin addition on the contents of phenolics, flavonoids, anthocyanins and antioxidant activities…

Abstract

Purpose

This study aims to investigate the effect of spray drying temperature and maltodextrin addition on the contents of phenolics, flavonoids, anthocyanins and antioxidant activities (2,2-diphenyl-1-picrylhydrazyl [DPPH] radical scavenging activity, ferric reducing antioxidant power and reducing power) of karonda powder.

Design/methodology/approach

Over the past few decades, the demands for application of natural colorants in food production have been attracting the attention of academic research and food industry. Anthocyanins, a red pigment commonly found on plants, show high potentials in the preparation of spray-dried pigment powder. This study, therefore, was conducted using full factorial design with two factors, namely, inlet temperature (150°C and 160°C) and soluble solid concentration (10, 15 and 20°Brix) with maltodextrin as carrier to produce pigment powder from karonda, an anthocyanin-rich fruit which is native to southeast Asia.

Findings

Increasing soluble solid content from 10 to 15°Brix resulted in a 42%–57% reduction in phenolic, flavonoid and anthocyanin contents. However, when increasing the amount of maltodextrin from 15 to 20°Brix, a lower reduction (approximately 11%–19%) was observed. In samples with the same °Brix, there was no significant variation in antioxidant contents and activities, especially at high maltodextrin ratios. In addition, the reducing power of samples dried at higher temperature (160°C) was higher than that of samples dried at lower temperature. Karonda spray-dried powder showed a good positive correlation (p < 0.01) between antioxidant contents and DPPH• activity.

Originality/value

To the best of the authors’ knowledge, in this study, for the first time, the effect of spray drying conditions on the quality of karonda powder was investigated.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 226