Search results

1 – 10 of over 7000
Article
Publication date: 4 January 2021

Huichao Wang, Qin Lian, Dichen Li, Chenghong Li, Tingze Zhao and Jin Liang

Reconstructing multi-layer tissue structure using cell printing to repairing complex tissue defect is a challenging task, especially using in situ bioprinting. This study aims to…

467

Abstract

Purpose

Reconstructing multi-layer tissue structure using cell printing to repairing complex tissue defect is a challenging task, especially using in situ bioprinting. This study aims to propose a method of in situ bioprinting multi-tissue layering and path planning for complex skin and soft tissue defects.

Design/methodology/approach

The scanned three-dimensional (3D) point cloud of the skin and soft tissue defect is taken as the input data, the depth value of the defect is then calculated using a two-step grid division method, and the tissue layer is judged according to the depth value. Then, the surface layering and path planning in the normal direction are performed for different tissue layers to achieve precise tissue layering filling of complex skin soft tissue defects.

Findings

The two-step grid method can accurately calculate the depth of skin and soft tissue defects and judge the tissue layer accordingly. In the in situ bioprinting experiment of the defect model, the defect can be completely closed. The defect can be reconstructed in situ, and the reconstructed structure is basically the same as the original skin tissue structure, proving the feasibility of the proposed method.

Originality/value

This study proposes an in situ bioprinting multi-tissue layering and path planning method for complex skin and soft tissue defects, which can directly convert the scanned 3D point cloud into a multi-tissue in situ bioprinting path. The printed result has a similar structure to that of the original skin tissue, which can make cells or growth factors act on the corresponding tissue layer targets.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 August 2023

Yongliang Wang, Ruiguang Feng, Dongping Li and Ruidong Peng

The induction of geological disasters is predominantly influenced by the dynamic evolution of the stress and plastic zones of the multilayer rock formations surrounding deep-rock…

Abstract

Purpose

The induction of geological disasters is predominantly influenced by the dynamic evolution of the stress and plastic zones of the multilayer rock formations surrounding deep-rock roadways, and the behaviours and mechanisms of high in situ stress are key scientific issues related to deep-resource exploitation. The stress environment of deep resources is more complex owing to the influence of several geological factors, such as tectonic movements and landforms. Therefore, in practical engineering, the in situ stress field is in a complex anisotropic three-dimensional state, which may change the deformation and failure law of the surrounding rock. The purpose of this study is to investigate the tunnelling-induced stress and plastic evolution causing instability of multilayered surrounding rock by varying three-dimensional in situ stresses.

Design/methodology/approach

Based on data from the Yangquan Coal Mine, China, a finite difference model was established, and the elastic-plastic constitutive model and element deletion technology designed in the study were analysed. Gradual tunnelling along the roof and floor of the coal seam was used in the model, which predicted the impact tendency, and compared the results with the impact tendency report to verify the validity of the model. The evolutions of the stress field and plastic zone of the coal roadway in different stress fields were studied by modifying the maximum horizontal in situ stress, minimum horizontal in situ stress and lateral pressure coefficient.

Findings

The results shown that the in situ stress influenced the stress distribution and plastic zone of the surrounding rock. With an increase in the minimum horizontal in situ stress, the vertical in situ stress release area of the roof surrounding rock slowly decreased; the area of vertical in situ stress concentration area of the deep surrounding rock on roadway sides decreased, increased and decreased by turn; the area of roof now-shear failure area first increased and then decreased. With an increase in the lateral pressure coefficient, the area of the horizontal in situ stress release area of the surrounding rock increased; the area of vertical in situ stress release area of the roof and floor surrounding rock first decreased and then increased; the area of deep stress concentration area of roadway sides decreased; and the plastic area of the surrounding rock and the area of now-shear failure first decreased and then increased.

Originality/value

The results obtained in this study are based on actual cases and reveal the evolution law of the disturbing stress and plastic zone of multilayer surrounding rock caused by three-dimensional in situ stress during the excavation of deep rock roadways, which can provide a practical reference for the extraction of deep resources.

Article
Publication date: 16 July 2021

Srinivas Prabhu, Padmakumar Bajakke and Vinayak Malik

In-situ aluminum metal matrix composites (AMMC) have taken over the use of ex-situ AMMC due to the generation of finer and thermodynamically stable intermetallic compounds…

150

Abstract

Purpose

In-situ aluminum metal matrix composites (AMMC) have taken over the use of ex-situ AMMC due to the generation of finer and thermodynamically stable intermetallic compounds. However, conventional processing routes pose inevitable defects like porosity and agglomeration of particles. This paper aims to study current state of progress in in-situ AMMC fabricated by Friction Stir Processing.

Design/methodology/approach

Friction stir processing (FSP) has successfully evolved to be a favorable in-situ composite manufacturing technique. The dynamics of the process account for a higher plastic strain of 35 and a strain rate of 75 per second. These processing conditions are responsible for grain evolution from rolled grain → dislocation walls and dislocation tangles → subgrains → dislocation multiplication → new grains. Working of matrix and reinforcement under ultra-high strain rate and shorter exposure time to high temperatures produce ultra-fine grains. Do the grain evolution modes include subgrain boundaries → subgrain boundaries and high angle grain boundaries → high angle grain boundaries.

Findings

Further, the increased strain and strain rate can shave and disrupt the oxide layer on the surface of particles and enhance wettability between the constituents. The frictional heat generated by tool and workpiece interaction is sufficient enough to raise the temperature to facilitate the exothermic reaction between the constituents. The heat released during the exothermic reaction can even raise the temperature and accelerate the reaction kinetics. In addition, heat release may cause local melting of the matrix material which helps to form strong interfacial bonds.

Originality/value

This article critically reviews the state of the art in the fabrication of in-situ AMMC through FSP. Further, FSP as a primary process and post-processing technique in the synthesis of in-situ AMMC are also dealt with.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 January 2012

Graham Mills and Gary Fones

This article aims to review the different devices that are available for the in situ monitoring of analytes found in the marine environment.

1948

Abstract

Purpose

This article aims to review the different devices that are available for the in situ monitoring of analytes found in the marine environment.

Design/methodology/approach

Following a short introduction to the topic, this paper discusses physical‐ and chemical‐based sensors, automatic analysers (flow injection, spectroscopic and spectrometric), electrochemical devices and biosensors.

Findings

A wide range of in situ monitoring systems (and associated deployment apparatus) for measuring concentrations of various analytes (e.g. nutrients, organic chemicals and metallic elements) have been developed in recent decades. Many of these systems are still at the laboratory or prototype stage and are yet to be fully developed into commercially available products. The harsh conditions often found in the marine environment can further limit the utility and application of these sensors. Further development work is needed; however, the need now is for field deployments, validation and inter‐calibration between sensors and other analytical measurement techniques.

Originality/value

This paper provides up‐to‐date information on in situ technologies that are available, either at the laboratory and prototype stages or commercially, and are suitable for deployment in the marine environment. Applications of these sensing systems are discussed together with their associated advantages and disadvantages over other existing water monitoring methods.

Details

Sensor Review, vol. 32 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 January 2009

Wei Pan and Alistair G.F. Gibb

Offsite is one of the main innovative techniques employed in the contemporary UK construction sector. Building maintenance accounts for over 5 percent of the UK's gross domestic…

1726

Abstract

Purpose

Offsite is one of the main innovative techniques employed in the contemporary UK construction sector. Building maintenance accounts for over 5 percent of the UK's gross domestic product of which bathrooms are regarded as a critical area, with potential high risks and defects. However, the importance of its maintenance has been largely underestimated and research into this area appears to be limited. This paper aims to address this knowledge gap by investigating the maintenance performance of offsite and in situ bathrooms for student accommodation.

Design/methodology/approach

The paper examines 732 maintenance records over three years of 216 precast concrete modules, 84 Glass Reinforced Polyester (GRP) modules and 96 traditionally‐built in situ bathrooms.

Findings

The research found that offsite modules outperformed in situ bathrooms in terms of maintenance. GRP modules created the least maintenance problems, compared to precast modules and in situ bathrooms. The maintenance of in situ bathrooms was more complex than offsite modules, and involved more diverse problematic areas. The main causes of the problems included inappropriate design; poor build workmanship, lack of quality of component materials and improper usage by occupants. This supports a parallel study that found that the costs associated with maintenance were significantly higher for in situ bathrooms than for the equivalent offsite solutions.

Research limitations/implications

The paper contributes to understanding the problems of offsite bathroom modules requiring maintenance in comparison with in situ bathrooms and their possible causes. Key aspects of offsite bathrooms including drainage, toilets, vents and sinks should be improved. Quality of component materials used for in situ bathrooms should be ensured. These improvements can only be achieved through better design for maintenance with clients' aspiration embodied. The findings should assist in design decision making of selecting bathrooms for residential buildings. However, a balanced approach, taking into account other factors for such selection, is open for future investigation.

Originality/value

The framework of strategies developed should improve the innovative design of bathrooms manufactured offsite and help maintain them for better lifecycle performance.

Details

Construction Innovation, vol. 9 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 26 October 2021

Yongliang Wang, Nana Liu, Xin Zhang, Xuguang Liu and Juan Wang

Simultaneous hydrofracturing of multiple perforation clusters in vertical wells has been applied in the stimulation of hydrocarbon resources reservoirs. This technology is…

Abstract

Purpose

Simultaneous hydrofracturing of multiple perforation clusters in vertical wells has been applied in the stimulation of hydrocarbon resources reservoirs. This technology is significantly impeded due to the challenges in its application to the multilayered reservoirs that comprise multiple interlayers. One of the challenges is the accurate understanding and characterization of propagation and deflection of the multiple hydraulic fractures between reservoirs and embedded interlayers.

Design/methodology/approach

Numerical models of the tight multilayered reservoirs containing multiple interlayers were established to study hydrofracturing of multiple perforation clusters and its influencing factors on unstable propagation and deflection of hydraulic fractures. Brittle and plastic multilayered reservoirs fully considering the influences of different in situ stress ratio and physical attributes for reservoir and interlayer strata on propagations of hydraulic fractures were investigated. The combined finite element–discrete element method and mesh refinement strategy were adopted to guarantee the accuracy of stress solutions and reliability of fracture path in computation.

Findings

Results show that the shear stress fields between adjacent multiple hydraulic fractures are superposed to cause fractures deflection. Stress shadows induce the shielding effects of hydraulic fractures and inhibit fractures growth to emerge unstable propagation behaviors, and a main single fracture and several minor fractures develop. As the in situ stress ratio increases, hydraulic fractures more easily deflect toward the direction of maximum in situ stress, and stress shadow and mutual interaction effects between them are intensified. Compared to brittle reservoir, plastic-enhanced reservoir may limit fracture growth and cannot form long fracture length; nevertheless, plastic properties of reservoir are prone to induce more microseismic events with larger magnitude.

Originality/value

The obtained fracturing behaviors and mechanisms based on engineering-scale multilayered reservoir may provide effective schemes for controlling and estimating the unstable propagation of multiple hydraulic fractures.

Article
Publication date: 16 March 2012

B. Guo, P. Yin, J. Xu, F.S. Liu, J.N. Wu, Y. Gao and F.Q. Guo

The purpose of this paper is to improve the anti‐sedimentation of the acrylic resin containing long afterglow phosphors (SrMgAl4O8:Eu2+, Dy3+).

Abstract

Purpose

The purpose of this paper is to improve the anti‐sedimentation of the acrylic resin containing long afterglow phosphors (SrMgAl4O8:Eu2+, Dy3+).

Design/methodology/approach

The phosphors were first modified by the vinylsilane coupling agent MPS (3‐(methacryloxypropyl)‐trimethoxysilane). Then, the acrylic resin containing modified phosphors was synthesised by in situ polymerisation. Meanwhile, the compared blend sample was prepared by pure acylic resin with no modified phosphors in the same content. When the two resins were coated on glass, the films were characterised by ATR‐FTIR, SEM and TGA. The sedimentation performances of liquid resins were also observed.

Findings

Results showed that anti‐sedimentation of acrylic resin with phosphors by in situ polymerisation was enhanced greatly, because the phosphors have been connected with the macromolecule chain, and dispersed homogeneously with no aggregation, so preventing its sedimentation.

Research limitations/implications

Researchers are encouraged to test the proposed method and enhance the anti‐sedimentation further.

Practical implications

This method provides an idea to solve the problem of anti‐sedimentation in luminescent paint containing long afterglow phosphors in practical production and application.

Originality/value

This paper introduced the in situ polymerisation to enhance the anti‐sedimentation of acrylic resin containing long afterglow phosphors and it can be applied also to other inorganic powders.

Details

Pigment & Resin Technology, vol. 41 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 August 2010

Mustafa Saroar and Jayant K. Routray

The paper aims to identify and assess quantitatively the influences of a few dimensions of climate awareness on people's preference for adaptation against sea level rise (SLR).

Abstract

Purpose

The paper aims to identify and assess quantitatively the influences of a few dimensions of climate awareness on people's preference for adaptation against sea level rise (SLR).

Design/methodology/approach

From the literature survey “familiarity with”, “perception about” and “intuitive knowledge about” climate change‐sea level rise (CC‐SLR) have been identified as dimensions of “climate awareness”. Empirical research was done through administering questionnaires among 285 respondents selected randomly from three coastal villages in Bangladesh. After principal component analysis, data sufficiency and colinearity test, a total of 18 variables were entered into a multinomial logistic regression model. The reference category “evacuation” was compared with other two choices, i.e. in situ adaptation with “same occupation” and “changed occupation”.

Findings

For the SLR scenario of 2050‐2075 occupational engagement, use of radio for climate information, exposure to rainfall, salinity and perception about CC‐SLR appeared as the most significant predictors of people's preference for evacuation or in situ adaptation (LR χ2=183.38, pseudo R2=0.54, p<.001). Similarly, for the SLR scenario of 2080‐2100, in addition to the factors cited above, some other factors such as educational attainment, exposure to flood, climate perception and familiarity appeared as the most significant predictor of respondent's preference (LR χ2=202.08, pseudo R2=0.60, p<0.001).

Originality/value

Two dimensions of climate awareness, i.e. familiarity with and perception about CC‐SLR may significantly influence the people's preference for adaptation choice. Launching a programme to enhance climate awareness without further delay may help people planning for anticipatory in situ adaptation against CC‐SLR.

Details

International Journal of Climate Change Strategies and Management, vol. 2 no. 3
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 20 December 2023

İdris Tuğrul Gülenç, Mingwen Bai, Ria L. Mitchell, Iain Todd and Beverley J. Inkson

Current methods for the preparation of composite powder feedstock for selective laser melting (SLM) rely on costly nanoparticles or yield inconsistent powder morphology. This…

Abstract

Purpose

Current methods for the preparation of composite powder feedstock for selective laser melting (SLM) rely on costly nanoparticles or yield inconsistent powder morphology. This study aims to develop a cost-effective Ti6Al4V-carbon feedstock, which preserves the parent Ti6Al4V particle’s flowability, and produces in situ TiC-reinforced Ti6Al4V composites with superior traits.

Design/methodology/approach

Ti6Al4V particles were directly mixed with graphite flakes in a planetary ball mill. This composite powder feedstock was used to manufacture in situ TiC-Ti6Al4V composites using various energy densities. Relative porosity, microstructure and hardness of the composites were evaluated for different SLM processing parameters.

Findings

Homogeneously carbon-coated Ti6Al4V particles were produced by direct mixing. After SLM processing, in situ grown 100–500 nm size TiC nanoparticles were distributed within the α-martensite Ti6Al4V matrix. The formation of TiC particles refines the Ti6Al4V β grain size. Relative density varied between 96.4% and 99.5% depending on the processing parameters. Hatch distance, exposure time and point distance were all effective on relative porosity change, whereas only exposure time and point distance were effective on hardness change.

Originality/value

This work introduces a novel, cost-effective powder feedstock preparation method for SLM manufacture of Ti6Al4V-TiC composites. The in situ SLM composites achieved in this study have high relative density values, well-dispersed TiC nanoparticles and increased hardness. In addition, the feedstock preparation method can be readily adapted for various matrix and reinforcement materials in future studies.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 November 2023

Yang Zhou, Zhong Li, Yuhe Huang, Xiaohan Chen, Xinggang Li, Xiaogang Hu and Qiang Zhu

Laser powder bed fusion (LPBF) in-situ alloying is a recently developed technology that provides a facile approach to optimizing the microstructural and compositional…

Abstract

Purpose

Laser powder bed fusion (LPBF) in-situ alloying is a recently developed technology that provides a facile approach to optimizing the microstructural and compositional characteristics of the components for high performance goals. However, the complex mass and heat transfer behavior of the molten pool results in an inhomogeneous composition distribution within the samples fabricated by LPBF in-situ alloying. The study aims to investigate the heat and mass transfer behavior of an in-situ alloyed molten pool by developing a three-dimensional transient thermal-flow model that couples the metallurgical behavior of the alloy, thereby revealing the formation mechanism of composition inhomogeneity.

Design/methodology/approach

A multispecies multiphase computational fluid dynamic model was developed with thermodynamic factors derived from the phase diagram of the selected alloy system. The characteristics of the Al/Cu powder bed in-situ alloying process were investigated as a benchmark. The metallurgical behaviors including powder melting, thermal-flow, element transfer and solidification were investigated.

Findings

The Peclet number indicates that the mass transfer in the molten pool is dominated by convection. The large variation in material properties and temperature results in the presence of partially melted Cu-powder and pre-solidified particles in the molten pool, which further hinder the convection mixing. The study of simulation and experiment indicates that optimizing the laser energy input is beneficial for element homogenization. The effective time and driving force of the convection stirring can be improved by increasing the volume energy density.

Originality/value

This study provides an in-depth understanding of the formation mechanism of composition inhomogeneity in alloy fabricated by LPBF in-situ alloying.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 7000