Search results

1 – 10 of 179
Article
Publication date: 2 April 2019

Longhan Xie and Ledeng Huang

The purpose of this paper is to design a lower limb exoskeleton to enhance hemiplegic patient’s muscle strength and help the affected side return to normal gait after a long…

483

Abstract

Purpose

The purpose of this paper is to design a lower limb exoskeleton to enhance hemiplegic patient’s muscle strength and help the affected side return to normal gait after a long period of training.

Design/methodology/approach

A wire rope-driven exoskeleton that combines rigid bracket and flexible driven method was presented to assist the patients with rehabilitative walking training. By using three noncontact cameras, the patient’s gait was captured and the target trajectory of the affected side was analyzed. Meanwhile, a controlling strategy of the affected side, which mimics the gait of the healthy side, was developed to help hemiplegic patients with varying degrees of hemiplegic gait obtain personalized walking rehabilitation training.

Findings

The results show that the hemiplegic gait of hip excessive abduction and strephenopodia was prevented. After wearing the exoskeleton, the movement trajectories of both sides of the lower limb were approximately identical. Based on the controlling strategy, the exoskeleton can correct the impaired gait and provide assistance for patients during walking. The exoskeleton has great benefits in walking rehabilitation training for hemiplegic patients.

Originality/value

This work improves the efficiency of the patient’s individualized training in the room. The presented exoskeleton provides great benefits in walking rehabilitation training for hemiplegic patients.

Details

Assembly Automation, vol. 40 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 18 September 2023

Yali Han, Shunyu Liu, Jiachen Chang, Han Sun, Shenyan Li, Haitao Gao and Zhuangzhuang Jin

This paper aims to propose a novel system design and control algorithm of lower limb exoskeleton, which provides walking assistance and load sharing for the wearer.

Abstract

Purpose

This paper aims to propose a novel system design and control algorithm of lower limb exoskeleton, which provides walking assistance and load sharing for the wearer.

Design/methodology/approach

In this paper, the valve-controlled asymmetrical hydraulic cylinder is selected for driving the hip and knee joint of exoskeleton. Pressure shoe is developed that purpose on detecting changes in plantar force, and a fuzzy recognition algorithm using plantar pressure is proposed. Dynamic model of the exoskeleton is established, and the sliding mode control is developed to implement the position tracking of exoskeleton. A series of prototype experiments including benchtop test, full assistance, partial assistance and loaded walking experiments are set up to verify the tracking performance and power-assisted effect of the proposed exoskeleton.

Findings

The control performance of PID control and sliding mode control are compared. The experimental data shows the tracking trajectories and tracking errors of sliding mode control and demonstrate its good robustness to nonlinearities. sEMG of the gastrocnemius muscle tends to be significantly weakened during assisted walking.

Originality/value

In this paper, a structure that the knee joint and hip joint driven by the valve-controlled asymmetrical cylinder is used to provide walking assistance for the wearer. The sliding mode control is proposed to deal with the nonlinearities during joint rotation and fluids. It shows great robustness and frequency adaptability through experiments under different motion frequencies and assistance modes. The design and control method of exoskeleton is a good attempt, which takes positive impacts on the productivity or quality of the life of wearers.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 December 2022

Meby Mathew, Mervin Joe Thomas, M.G. Navaneeth, Shifa Sulaiman, A.N. Amudhan and A.P. Sudheer

The purpose of this review paper is to address the substantial challenges of the outdated exoskeletons used for rehabilitation and further study the current advancements in this…

Abstract

Purpose

The purpose of this review paper is to address the substantial challenges of the outdated exoskeletons used for rehabilitation and further study the current advancements in this field. The shortcomings and technological developments in sensing the input signals to enable the desired motions, actuation, control and training methods are explained for further improvements in exoskeleton research.

Design/methodology/approach

Search platforms such as Web of Science, IEEE, Scopus and PubMed were used to collect the literature. The total number of recent articles referred to in this review paper with relevant keywords is filtered to 143.

Findings

Exoskeletons are getting smarter often with the integration of various modern tools to enhance the effectiveness of rehabilitation. The recent applications of bio signal sensing for rehabilitation to perform user-desired actions promote the development of independent exoskeleton systems. The modern concepts of artificial intelligence and machine learning enable the implementation of brain–computer interfacing (BCI) and hybrid BCIs in exoskeletons. Likewise, novel actuation techniques are necessary to overcome the significant challenges seen in conventional exoskeletons, such as the high-power requirements, poor back drivability, bulkiness and low energy efficiency. Implementation of suitable controller algorithms facilitates the instantaneous correction of actuation signals for all joints to obtain the desired motion. Furthermore, applying the traditional rehabilitation training methods is monotonous and exhausting for the user and the trainer. The incorporation of games, virtual reality (VR) and augmented reality (AR) technologies in exoskeletons has made rehabilitation training far more effective in recent times. The combination of electroencephalogram and electromyography-based hybrid BCI is desirable for signal sensing and controlling the exoskeletons based on user intentions. The challenges faced with actuation can be resolved by developing advanced power sources with minimal size and weight, easy portability, lower cost and good energy storage capacity. Implementation of novel smart materials enables a colossal scope for actuation in future exoskeleton developments. Improved versions of sliding mode control reported in the literature are suitable for robust control of nonlinear exoskeleton models. Optimizing the controller parameters with the help of evolutionary algorithms is also an effective method for exoskeleton control. The experiments using VR/AR and games for rehabilitation training yielded promising results as the performance of patients improved substantially.

Research limitations/implications

Robotic exoskeleton-based rehabilitation will help to reduce the fatigue of physiotherapists. Repeated and intention-based exercise will improve the recovery of the affected part at a faster pace. Improved rehabilitation training methods like VR/AR-based technologies help in motivating the subject.

Originality/value

The paper describes the recent methods for signal sensing, actuation, control and rehabilitation training approaches used in developing exoskeletons. All these areas are key elements in an exoskeleton where the review papers are published very limitedly. Therefore, this paper will stand as a guide for the researchers working in this domain.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 August 2017

Du-Xin Liu, Xinyu Wu, Wenbin Du, Can Wang, Chunjie Chen and Tiantian Xu

The purpose of this paper is to model and predict suitable gait trajectories of lower-limb exoskeleton for wearer during rehabilitation walking. Lower-limb exoskeleton is widely…

Abstract

Purpose

The purpose of this paper is to model and predict suitable gait trajectories of lower-limb exoskeleton for wearer during rehabilitation walking. Lower-limb exoskeleton is widely used for assisting walk in rehabilitation field. One key problem for exoskeleton control is to model and predict suitable gait trajectories for wearer.

Design/methodology/approach

In this paper, the authors propose a Deep Spatial-Temporal Model (DSTM) for generating knee joint trajectory of lower-limb exoskeleton, which first leverages Long-Short Term Memory framework to learn the inherent spatial-temporal correlations of gait features.

Findings

With DSTM, the pathological knee joint trajectories can be predicted based on subject’s other joints. The energy expenditure is adopted for verifying the effectiveness of new recovery gait pattern by monitoring dynamic heart rate. The experimental results demonstrate that the subjects have less energy expenditure in new recovery gait pattern than in others’ normal gait patterns, which also means the new recovery gait is more suitable for subject.

Originality/value

Long-Short Term Memory framework is first used for modeling rehabilitation gait, and the deep spatial–temporal relationships between joints of gait data can obtained successfully.

Details

Assembly Automation, vol. 37 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 24 August 2021

Yue Xu, Qingcong Wu, Bai Chen and Xi Chen

For the robot-assisted upper limb rehabilitation training process of the elderly with damaged neuromuscular channels and hemiplegic patients, bioelectric signals are added to…

Abstract

Purpose

For the robot-assisted upper limb rehabilitation training process of the elderly with damaged neuromuscular channels and hemiplegic patients, bioelectric signals are added to transform the traditional passive training mode into the active training mode.

Design/methodology/approach

This paper mainly builds a steady-state visual stimulation interface, an electroencephalography (EEG) signal processing platform and an exoskeleton robot verification platform. The target flashing stimulation blocks provide visual stimulation at the specified position according to the specified frequency and stimulate EEG signals of different frequency bands. The EEG signal-processing platform constructed in this paper removes the noise by using Butterworth band-pass filtering and common average reference filtering on the obtained signals. Further, the features are extracted to identify the volunteer’s active movement intention through the canonical correlation analysis (CCA) method. The classification results are transmitted to the upper limb exoskeleton robot control system, combined with the position and posture of the exoskeleton robot to control the joint motion of robot.

Findings

Through a large number of experimental studies, the average accuracy of offline recognition of motion intention recognition can reach 86.1%. The control strategy with a three-instruction judgment method reduces the average execution error rate of the entire control system to 6.75%. Online experiments verify the feasibility of the steady-state visual evoked potentials (SSVEP)-based rehabilitation system.

Originality/value

An EEG signal analysis method based on SSVEP is integrated into the control of an upper limb exoskeleton robot, transforming the traditional passive training mode into the active training mode. The device used to record EEG is of very low cost, which has the potential to promote the rehabilitation system for further widely applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 June 2021

Jiaqi Zhang, Ming Cong, Dong Liu, Yu Du and Hongjiang Ma

The purpose of this paper is to use a simple method to enhance the ability of lower limb exoskeletons to restore balance under large interference conditions and to solve the…

Abstract

Purpose

The purpose of this paper is to use a simple method to enhance the ability of lower limb exoskeletons to restore balance under large interference conditions and to solve the problem that biped robot stability criterion cannot be fully applied to the underactuated lower limb exoskeletons.

Design/methodology/approach

The method used in this paper is to construct an underactuated lower extremity exoskeleton ankle joint with a torsion spring. Based on the constructed exoskeleton, the linear inverted torsion spring pendulum model is proposed, and the traditional capture point (CP) concept is optimized.

Findings

The underactuated exoskeleton ankle joint with torsion springs, combined with the improved CP concept, can effectively reduce the forward stepping distance under the same interference condition, which is equivalent to enhancing the balance ability of the lower extremity exoskeleton.

Originality/value

The contribution of this paper is to enhance the balance ability of the exoskeleton of the lower limbs under large interference conditions. The torsion spring is used as the exoskeleton ankle joint, and the traditional CP concept is optimized according to the constructed exoskeleton.

Details

Assembly Automation, vol. 41 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 May 2019

Payman Joudzadeh, Alireza Hadi, Bahram Tarvirdizadeh, Danial Borooghani and Khalil Alipour

This paper aims to deal with the development of a novel lower limb exoskeleton to assist disabled people in stair ascending.

Abstract

Purpose

This paper aims to deal with the development of a novel lower limb exoskeleton to assist disabled people in stair ascending.

Design/methodology/approach

For this purpose, a novel design of a mixture of motors and cables has been proposed for users to wear them easily and show the application of the system in stair climbing.

Findings

One of the prominences of this study is the provided robot design where four joints are actuated with only two motors; each motor actuates either the knees or ankles. Another advantage of the designed system is that with motors placed in a backpack, the knee braces can be worn under clothes to be concealed. Finally, the system performance is evaluated using electromyography (EMG) signals showing 28 per cent reduction in energy consumption of related muscles.

Originality/value

This investigation deals with the development of a novel lower limb exoskeleton to assist disabled people in stair ascending.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 October 2022

Ziyu Liao, Bai Chen, Tianzuo Chang, Qian Zheng, Keming Liu and Junnan Lv

Supernumerary robotic limbs (SRLs) are a new type of wearable robot, which improve the user’s operating and perceive the user’s environment by extra robotic limbs. There are some…

381

Abstract

Purpose

Supernumerary robotic limbs (SRLs) are a new type of wearable robot, which improve the user’s operating and perceive the user’s environment by extra robotic limbs. There are some literature reviews about the SRLs’ key technology and development trend, but the design of SRLs has not been fully discussed and summarized. This paper aims to focus on the design of SRLs and provides a comprehensive review of the ontological structure design of SRLs.

Design/methodology/approach

In this paper, the related literature of SRLs is summarized and analyzed by VOSviewer. The structural features of different types of SRLs are extracted, and then discuss the design approach and characteristics of SRLs which are different from typical wearable robots.

Findings

The design concept of SRLs is different from the conventional wearable robots. SRLs have various reconfiguration and installed positions, and it will influence the safety and cooperativeness performance of SRLs.

Originality/value

This paper focuses on discussing the structural design of SRLs by literature review, and this review will help researchers understand the structural features of SRLs and key points of the ontological design of SRLs, which can be used as a reference for designing SRLs.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 March 2013

Riaan Stopforth

The purpose of this paper is to investigate the mechanical, kinematic and biological aspects that would be required for a customized upper limb exoskeleton prototype operation.

Abstract

Purpose

The purpose of this paper is to investigate the mechanical, kinematic and biological aspects that would be required for a customized upper limb exoskeleton prototype operation.

Design/methodology/approach

The research contained a literature survey, design, simulation, development and testing of an exoskeleton arm.

Findings

An adjustable/customizable exoskeleton arm was developed with a kinematic model to allow the desired motion. Tests were performed to determine the feasibility of the system.

Originality/value

The paper shows how the authors researched, designed and developed an exoskeleton arm that had similar mechanical properties to those of a biological arm. The exoskeleton must allow customization and be adaptable to the operator, without the need for major alterations.

Details

Industrial Robot: An International Journal, vol. 40 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 June 2019

Qiming Chen, Hong Cheng, Rui Huang, Jing Qiu and Xinhua Chen

Lower-limb exoskeleton systems enable people with spinal cord injury to regain some degree of locomotion ability, as the expected motion curve needs to adapt with changing…

Abstract

Purpose

Lower-limb exoskeleton systems enable people with spinal cord injury to regain some degree of locomotion ability, as the expected motion curve needs to adapt with changing scenarios, i.e. stair heights, distance to the stairs. The authors’ approach enables exoskeleton systems to adapt to different scenarios in stair ascent task safely.

Design/methodology/approach

In this paper, the authors learn the locomotion from predefined trajectories and walk upstairs by re-planning the trajectories according to external forces posed on exoskeleton systems. Moreover, instead of using complex sensors as inputs for re-planning in real-time, the approach can obtain forces acting on exoskeleton through dynamic model of human-exoskeleton system learned by an online machine learning approach without accurate parameters.

Findings

The proposed approach is validated in both simulation environment and a real walking assistance exoskeleton system. Experimental results prove that the proposed approach achieves better performance than the traditional predefined gait approach.

Originality/value

First, the approach obtain the external forces by a learned dynamic model of human-exoskeleton system, which reduces the cost of exoskeletons and avoids the heavy task of translating sensor input into actuator output. Second, the approach enables exoskeleton accomplish stair ascent task safely in different scenarios.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 179