Search results

1 – 10 of 785
Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1146

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2018

Daoyu Hu, Jianwen Zhang, Feng Gu and Zhuyong Li

The purpose of this study is to propose a modeling method of the equivalent circuit for a new type of high-temperature superconducting partial-core transformer (HTS-PCT) made of…

Abstract

Purpose

The purpose of this study is to propose a modeling method of the equivalent circuit for a new type of high-temperature superconducting partial-core transformer (HTS-PCT) made of ReBCO-coated conductors.

Design/methodology/approach

The modeling process is based on the “Steinmetz” equivalent circuit. The impedance components in the circuit are obtained by the calculations of the core losses and AC losses of the HTS windings by using theoretical methods. An iterative computation is also used to decide the equivalent resistances of the AC losses of the primary and secondary HTS windings. The reactance components in the circuit are calculated from the energy stored in the magnetic fields by finite element method. The validation of the modeling method is verified by experimental results

Findings

The modeling method of the equivalent circuit of HTS-PCT is valid, and an equivalent circuit for HTS-PCT is presented.

Practical implications

The equivalent circuit of HTS-PCT could be obtained by the suggested modeling method. Then, it is easy to analyze the characteristics of the HTS-PCT by its equivalent circuit. Moreover, the modeling method could also be useful for the design of a specific HTS-PCT.

Originality/value

The study proposes a modeling method of the HTS-PCT made of the second-generation HTS tapes, i.e. ReBCO-coated conductors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2011

Guenter Wollenberg and Sergey V. Kochetov

The paper aims to give the reader a consolidated state of art in the full‐wave modeling of passive interconnection systems using equivalent circuits and presents several…

Abstract

Purpose

The paper aims to give the reader a consolidated state of art in the full‐wave modeling of passive interconnection systems using equivalent circuits and presents several advantageous techniques developed by the authors.

Design/methodology/approach

The paper presents the theory of generalized partial element equivalent circuit (PEEC) modeling in the frequency domain (FD) and time domain (TD) developed by the authors. The widely spread simplified approaches are derived from this general formulation and the most important issues (e.g. stability in the TD) are considered. The theoretical part is completed by a simulation example, which shows the efficiency of studied methods.

Findings

Novel approaches for co‐simulation of passive interconnections in their circuit environment.

Practical implications

The PEEC method is widely used in the practice of computational electromagnetics, e.g. by the authors in the practical electromagnetic compatibility simulation.

Originality/value

The paper is based on the original work of authors carried through over many years.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 1 February 2022

Samuel Kvasnicka, Thomas Bauernfeind, Paul Baumgartner and Riccardo Torchio

The purpose of this paper is to show that the computation of time-periodic signals for coupled antenna-circuit problems can be substantially accelerated by means of the single…

Abstract

Purpose

The purpose of this paper is to show that the computation of time-periodic signals for coupled antenna-circuit problems can be substantially accelerated by means of the single shooting method. This allows an efficient analysis of nonlinearly loaded coupled loop antennas for near field communication (NFC) applications.

Design/methodology/approach

For the modelling of electrically small coupled field-circuit problems, the partial element equivalent circuit (PEEC) method shows to be very efficient. For analysing the circuit-like description of the coupled problem, this paper developed a generalised modified nodal analysis (MNA) and applied it to specific NFC problems.

Findings

It is shown that the periodic steady state (PSS) solution of the resulting differential-algebraic system can be computed very time efficiently by the single shooting method. A speedup of roughly 114 to conventional transient approaches can be achieved.

Practical implications

The proposed approach appears to be an efficient alternative for the computation of time PSS solutions for nonlinear circuit problems coupled with discretised conductive structures, where the homogeneous solution is not of interest.

Originality/value

The present paper explores the implementation and application of the shooting method for nonlinearly loaded coupled antenna-circuit problems based on the PEEC method and shows the efficiency of this approach.

Article
Publication date: 16 November 2010

Peter Scholz, Wolfgang Ackermann and Thomas Weiland

The purpose of this paper is to offer a fast and accurate simulation method for printed spiral radio frequency identification coils and to extract the parameters of an equivalent

Abstract

Purpose

The purpose of this paper is to offer a fast and accurate simulation method for printed spiral radio frequency identification coils and to extract the parameters of an equivalent resonance circuit.

Design/methodology/approach

The frequency‐dependent port impedance of a rectangular spiral multi‐turn antenna is simulated with the non‐retarded partial element equivalent circuit (PEEC) method. The discretization settings needed for an accurate modeling of skin and proximity effects at medium frequencies as well as parasitic capacitances are discussed. Two different PEEC approaches are used, a magneto‐quasi‐static (resistive and inductive cells) model and a non‐retarded (capacitive cells included) model in order to extract a reduced equivalent resonance circuit which is beneficial to describe the inductive coupling to further inductors via the transformer concept.

Findings

With optimized mesh settings, the extremely fast simulation can be carried out just in seconds whereas the results compared to a computationally much more expensive CST Microwave Studio® reference solution as well as an analytical direct current solution show errors of only about a few percent.

Research limitations/implications

The methodology is limited to frequencies up to the first self‐resonant frequency of the coil. In addition, piecewise‐homogeneous materials are implied.

Originality/value

Specialized mesh settings allow for a very fast and accurate simulation of rectangular spiral inductors. A method for the parameter extraction of a resonance circuit is proposed by evaluating two different PEEC models.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 November 2016

Toshihito Shimotani, Yuki Sato and Hajime Igarashi

The purpose of this paper is to propose a fast synthesis method of the equivalent circuits of electromagnetic devices using model order reduction. Finite element method (FEM) has…

Abstract

Purpose

The purpose of this paper is to propose a fast synthesis method of the equivalent circuits of electromagnetic devices using model order reduction. Finite element method (FEM) has been widely used to design electromagnetic devices. For FE analysis of these devices connected to control and deriving circuits, FE equations coupled with the circuit equations have to be solved for many times in their design processes. If the FE models are replaced by equivalent circuit models, computational time could be drastically reduced.

Design/methodology/approach

In the proposed method, a reduced FE model is obtained using proper orthogonal decomposition (POD) in which the size of FE equation is effectively reduced so that the computational time for FE analysis is shortened. Then, the equivalent circuits are directly synthesized from the admittance function of the reduced system.

Findings

Accuracy and computational efficiency of the proposed method are compared with those of another POD-based method in which the equivalent circuits are synthesized from fitting of frequency characteristics using optimization algorithm. There are no significant differences in the accuracy of both methods, while the speedup ratio of the former method is found larger than that for the latter method for the same sampling points.

Originality/value

The equivalent circuits of electric machines and devices have been synthesized on the basis of physical insight of engineers. This paper proposes a novel method by which the equivalent circuits are automatically synthesized from FE model of the electric machines and devices using POD.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 March 2016

Trung-Son Nguyen, Tung Le Duc, Son Thanh Tran, Jean-Michel Guichon and Olivier Chadebec

To synthesize equivalent circuit obtained from reduced order model of large scale inductive PEEC circuits.

Abstract

Purpose

To synthesize equivalent circuit obtained from reduced order model of large scale inductive PEEC circuits.

Design/methodology/approach

This paper describes an original approach for reducing and synthesizing large parasitic RLM electrical circuits coming from inductive Partial Element Equivalent Circuit (PEEC) models. The proposed technique enables the re-use of the reduced order model in the time domain circuit simulation context.

Findings

The paper shows how to use a synthesis method to realize an equivalent circuit issued from compressed PEEC circuits.

Originality/value

The coupling between methods PEEC and a compressed method as Fast Multipole Method (FMM) in order to reduce time and space consuming are well-known. The innovation here is to realise a smaller circuit equivalent with the original large scale PEEC circuits to use in temporal simulation tools. Moreover, this synthesis method reduces time and memories for modelling industrial application while maintaining high accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 35 no. 3
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 April 2004

Georgios I. Zekos

Investigates the differences in protocols between arbitral tribunals and courts, with particular emphasis on US, Greek and English law. Gives examples of each country and its way…

10844

Abstract

Investigates the differences in protocols between arbitral tribunals and courts, with particular emphasis on US, Greek and English law. Gives examples of each country and its way of using the law in specific circumstances, and shows the variations therein. Sums up that arbitration is much the better way to gok as it avoids delays and expenses, plus the vexation/frustration of normal litigation. Concludes that the US and Greek constitutions and common law tradition in England appear to allow involved parties to choose their own judge, who can thus be an arbitrator. Discusses e‐commerce and speculates on this for the future.

Details

Managerial Law, vol. 46 no. 2/3
Type: Research Article
ISSN: 0309-0558

Keywords

Article
Publication date: 19 May 2020

Gerard Meunier, Quang-Anh Phan, Olivier Chadebec, Jean-Michel Guichon, Bertrand Bannwarth and Riccardo Torchio

This paper aims to study unstructured-partial element equivalent circuit (PEEC) method for modelling electromagnetic regions with surface impedance condition (SIBC) is proposed…

Abstract

Purpose

This paper aims to study unstructured-partial element equivalent circuit (PEEC) method for modelling electromagnetic regions with surface impedance condition (SIBC) is proposed. Two coupled circuits representations are used for solving both electric and/or magnetic effects in thin regions discretized by a finite element surface mesh. The formulation is applied in the context of low frequency problems with volumic magnetic media and coils. Non simply connected regions are treated with fundamental branch independent loop matrices coming from the circuit representation.

Design/methodology/approach

Because of the use of Whitney face elements, two coupled circuits representations are used for solving both electric and/or magnetic effects in thin regions discretized by a finite element surface mesh. The air is not meshed.

Findings

The new surface impedance formulation enables the modeling of volume conductive regions to efficiently simulate various devices with only a surface mesh.

Research limitations/implications

The propagation effects are not taken into account in the proposed formulation.

Originality/value

The formulation is original and is efficient for modeling non simply connected conductive regions with the use of SIBC. The unstructured PEEC SIBC formulation has been validated in presence of volume magnetic nonconductive region and compared with a SIBC FEM approach. The computational effort is considerably reduced in comparison with volume approaches.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 785