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Abstract
Purpose – The purpose of this paper is to show that the computation of time-periodic signals for coupled
antenna-circuit problems can be substantially accelerated by means of the single shooting method. This
allows an efficient analysis of nonlinearly loaded coupled loop antennas for near field communication (NFC)
applications.
Design/methodology/approach – For the modelling of electrically small coupled field-circuit problems,
the partial element equivalent circuit (PEEC) method shows to be very efficient. For analysing the circuit-like
description of the coupled problem, this paper developed a generalised modified nodal analysis (MNA) and
applied it to specific NFC problems.
Findings – It is shown that the periodic steady state (PSS) solution of the resulting differential-algebraic
system can be computed very time efficiently by the single shooting method. A speedup of roughly 114 to
conventional transient approaches can be achieved.
Practical implications – The proposed approach appears to be an efficient alternative for the
computation of time PSS solutions for nonlinear circuit problems coupled with discretised conductive
structures, where the homogeneous solution is not of interest.
Originality/value – The present paper explores the implementation and application of the shooting
method for nonlinearly loaded coupled antenna-circuit problems based on the PEEC method and shows the
efficiency of this approach.
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1. Introduction
Before introducing a near field communication (NFC) device on the market, a rather large
number of standardisation tests have to be carried out, which are time-consuming,
expensive and require a prototype device. To overcome this problem, the idea is to develop a
digital twin of the NFC device and carry out those tests in terms of numerical simulations, as
e.g. proposed in (Bauernfeind et al., 2020, pp. 3–14), which rely on a frequency domain
method. On the other hand, the NFC-IC as well as the standardised test equipment, show a
strong nonlinear electric behaviour. Hence, accurate modelling of this nonlinear electric
behaviour is not possible with this approach. Consequently, a strategy is needed which
allows the incorporation of this behaviour. Because we are interested in the periodic steady
state (PSS) solution only, we propose to apply the single shooting method, for instance,
(Kundert et al., 1990, pp. 65–70) or (Kvasnicka 2020, pp. 42–45), which solves the underlying
differential-algebraic equation (DAE) in terms of a boundary value problem (BVP) instead of
an initial value problem (IVP) as in conventional transient solution strategies.

Like in (Bauernfeind et al., 2018), the partial element equivalent circuit (PEEC) method is
applied, which is a useful method to model electromagnetic (EM) field problems in terms of a
circuit-like description. Hence, it is possible to combine an EM problem with external
lumped circuits which contain linear and nonlinear elements. Thus, numerical techniques,
which are applicable in the electric circuit analysis, can also be applied to such hybrid EM
and circuit models to compute the PSS solution.

For the discretisation of the loop structures, one-dimensional (1D) stick elements are
used, which significantly simplifies the modelling of the NFC loop antennas. However,
the adoption of this kind of element introduces unavoidable approximations. Indeed, skin
effects are completely neglected. Moreover, only volume electric charge density is
considered. This may lead to some inaccuracies when capacitive effects between close
conductive surfaces are predominant (Torchio, 2019). However, the PEEC method with
stick wires allows for a good trade-off between accuracy and computational costs,
especially in the optimisation-based pre-design phase.

The remainder of the paper is structured as follows. In Section 2, the PEEC-based model
of the coupled field-circuit problem is explained. Here, special attention is paid to the needed
modification of the resulting system matrix of the PEEC formulation to enable the
applicability of the modified nodal analysis (MNA) on the circuit representation of the
coupled field-circuit problem. This modification allows the coupling with external nonlinear
circuit elements in a standardised MNA formulation, which results in a description via DAE
system. In Section 3, the solution strategies transient analysis and single shooting based on
backward differentiation formula (BDF) are introduced and briefly discussed. Section 4
shows the simulation results of the test problem consisting of two close-coupled NFC loop
antennas with nonlinear resistive loading. Finally, in Section 5, a conclusion of the obtained
results, as well as an outlook on future work, is presented.

2. Modelling
2.1 Modelling conductive structures using PEEC method
A quasi-static PEECmethod is used to model the conductive domain, whereby in the applied
PEEC formulation, neither dielectric nor magnetic materials are considered, which is no
major restriction regarding the NFC standardisation tests.

The conductive structure, e.g. NFC antennas, can be discretised by bL,peec thin wire stick
elements which are modelled by bL,peec PEEC cells and nC,peec PEEC nodes. Figure 1 shows
the m-th PEEC cell between the nodes i and j (Ekman, 2003, p. 32 and p. 54), whereby the
PEEC cells are described by a symmetric partial potential matrix P ¼ pi;jð Þ1≤i;j≤nC;peec , a
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partial inductance matrix L0 ¼ ðL0
i;jÞ1≤i;j≤bL;peec and a diagonal partial resistance matrix

R0 ¼ diagðR0
1; . . . ;R

0
bL;peec

Þ. In general, the matrices P and L0 are fully populated. In the case
of filamentary coils, the coefficients of the matrices P, L0 andR0 can be computed according
to (Torchio et al., 2017, p. 2), which corresponds to a 1D discretisation approach.

For solving the circuit description given by the PEEC method, the MNA is used. Hence, it is
useful tomodel the capacitive elements shown in Figure 1 in a differentway. The diagonalmatrix

F :¼ diag
1
p1;1

; . . . ;
1

pnC;peec;nC;peec

 !
contains the (pseudo-) capacitances C0

i regarding Figure 1. The matrices P and F
are invertible, and therefore the invertible matrix S := P · F can be defined. Due to

the symmetry of P, the relation F � S�1 ¼ P�1 ¼ S>ð Þ�1 � F is valid. With respect
to Figure 1 and the definition of the PEEC node potentials
eC;peec tð Þ :¼ ðe1 tð Þ; . . . ; enC;peec tð ÞÞ>; the branch voltages uC0 tð Þ ¼ ðuC0

1
tð Þ;…; uC0

nC;peec
tð ÞÞ>

of the (pseudo-) capacitances can be written as

uC0 tð Þ ¼ S�1 � eC;peec tð Þ :
Consequently, the matrices Cpeec := (ST)�1 · F and Lpeec := L 0 can be defined. Figure 2
shows an equivalent representation of the m-th PEEC cell with respect to Figure 1,
consisting of coupled inductances L>

peec;m and coupled capacitances C>
peec;i;C

>
peec;j,

whereby L>
peec;m and C>

peec;i denotes the m-th and i-th row vectors of the matrices Lpeec

and Cpeec, respectively.

Figure 1.
Circuit representation
of them-th PEEC cell.
The voltage sources
in the cell represent
the capacitive and
inductive coupling to
other PEEC cells

Figure 2.
Equivalent circuit
representation of the
m-th PEEC cell used
in the MNA approach
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Regarding Figure 2, the relations between capacitive and inductive branch currents and
voltages are given by

iC;peec tð Þ ¼ Cpeec � duC;peec tð Þ
dt

;

uL;peec tð Þ ¼ Lpeec � diL;peec tð Þ
dt

;

which also considers the capacitive and inductive coupling between the cells.

2.2 Applying MNA using PEEC model
Due to the circuit-like description of the EM field problem by means of the PEEC method,
external lumped elements can be easily added. In the proposed MNA formulation, linear
resistive, capacitive and inductive elements, nonlinear resistive elements such as diodes and
independent sources can be considered.

The external circuit to be analysed, possesses bU independent voltage sources, bI
independent current sources, bC := nC,peec þ bC,ext linear capacitive elements, bL :=
bL,peec þ bL,ext linear inductive elements and bR := bR,peec þ bR,ext,lin þ bR,ext,NL resistive
elements, whereby the subscripts “peec”, “ext”, “ext,lin” and “ext,NL” relates to elements of the
PEEC cells, external elements, external linear and nonlinear elements, respectively. The
common reference potential of the lumped circuit corresponds with the reference potential of
the PEEC cells. The total number of nodes is indicated by n and n� 1 = nC,peec þ bL,peec þ
bL,extþ next complies with the total number of nodes excluding the reference node. Here, nC,peec
corresponds to the PEEC nodes, bL,peec corresponds to the added node between the inductive
and resistive element of each PEEC cell (Figure 2), and next corresponds to the additional nodes
of the external lumped circuit.

In the MNA, the topology of the whole circuit is described by the reduced incidence
matrix A, for instance (Riaza, 2008, p. 198) or (Kvasnicka, 2020, pp. 18–19), consisting of
blocks for the different types of circuit elements

A :¼ AR;AC ;AL;AU ;AIð Þ ;
where A‘ 2 R n�1ð Þ�b‘ for ‘ [ {R, C, L, U, I} is introduced. Further, the resistive, capacitive
and inductive reduced incidence matrices are subdivided into

AR :¼ AR;peec;AR;ext;lin;AR;ext;NL
� �

;
AC :¼ AC;peec;AC;ext

� �
;

AL :¼ AL;peec;AL;ext
� �

;

relating to the appropriate elements. For example, the k-th column of AC,ext describes the
incidence between the branch of the k-th external capacitance and the connected nodes. The
connection between branch voltages u(t) and node potentials e(t) is then given as

u tð Þ �A> � e tð Þ ¼ 0 :

The relation between the external linear resistive, capacitive and inductive elements are
described by their characteristic equations using matrices Rext;lin 2 RbR;ext;lin�bR;ext;lin ,
Cext 2 RbC;ext�bC;ext andLext 2 RbL;ext�bL;ext . The definition of the function cR : RbR ! RbR
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cR

uR;peec

uR;ext;lin

uR;ext;NL

0B@
1CA :¼

R�1
peec � uR;peec

R�1
ext;lin � uR;ext;lin

cR;ext;NL uR;ext;NLð Þ

0BB@
1CCA ;

describes the behaviour of resistive branch currents depending on the resistive branch
voltages. Therefore, a function cR;ext;NL : RbR;ext;NL ! RbR;ext;NL describes the behaviour of the
nonlinear resistive elements and Rpeec = R0 describes the behaviour of the PEEC of the
PEEC resistance, in accordance with Section 2.1.

To avoid a MNA formulation including ðS>Þ�1, the relation F � S−1 ¼ S>ð Þ�1 � F
can be used, according to Section 2.1. Therefore, the matrices eS; eF are defined as

eS :¼ S> 0

0 I

 !
2 R n�1ð Þ� n�1ð Þ ;

eF :¼ F> 0

0 0

 !
2 R n�1ð Þ� n�1ð Þ ;

whereby I denote the identity matrix and 0 denote the zero matrix.
Definingm := n� 1þ bL,peecþ bL,extþ bU and by taking the previous preliminaries into

account, the MNA formulation can be applied, for instance, (Riaza 2008, p. 215) or
(Kvasnicka 2020, pp. 67–68), resulting in the DAE as follows

M � dx tð Þ
dt

þ f x tð Þð Þ þ b tð Þ ¼ 0: (1)

Here, x tð Þ :¼ ðe tð Þ>; iL tð Þ>; iU tð Þ>Þ> 2 Rm is the vector of unknowns, consisting of
node potentials e tð Þ ¼ ðeC;peec tð Þ>; eR;peec tð Þ>; eext tð Þ>Þ>, currents of independent voltage
sources iU(t) and inductive currents iL tð Þ ¼ ðiL;peec tð Þ>; iL;ext tð Þ>Þ>:

The matrix M 2 Rm�m, b : R ! Rm and the relation f : Rn�1 � RbL � RbU ! Rm are
defined as

M ¼

eF þ eS � AC;ext � Cext � A>
C;ext 0 0 0

0 Lpeec 0 0
0 0 Lext 0
0 0 0 0

0BBBB@
1CCCCA;

f
e
iL
iU

0B@
1CA ¼

eS � AR � cR A>
R � e

� �
þAL � iL þAU � iU

� �
�A>

L � e

A>
U � e

0BBB@
1CCCA;

b tð Þ ¼
eS � AI � iQ tð Þ

0
�uQ tð Þ

0B@
1CA;
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with known functions iQ(t) and uQ(t) of independent current and voltage sources,
respectively. Finally, a DAE description of the conductive structure coupled with an
external circuit is given. Based on these relations, numerical methods are applied for
obtaining the PSS solution.

3. Numerical methods
For numerically computing the PSS solution of equation (1), some requirements have to be
fulfilled, which in the following are briefly summarised. Firstly, the complete circuit to be
analysed is supplied by T-periodic sources, i.e. iQ(t) and uQ(t) are T-periodic functions.
Secondly, because of the presence of nonlinear elements, it is assumed that the describing DAE
(1) ensures a PSS solution. Thirdly, the quasilinear DAE (1) is at most an index-1 DAE,
whereby an introduction for the DAE index can be found, for instance, in (Riaza 2008, pp. 5–8)
or (Schwarz and Tischendorf 2005, pp. 7–8).

The computation of the PSS solution is implemented with a single shooting based on
BDF. This linear multistep method is a stable algorithm for computing the solution of an
index-1 DAE (Ascher and Petzold, 1998, pp. 266–267). In the case of DAEs with a higher
index, a stable functionality of BDF cannot be guaranteed, and therefore, an index reduction
technique is essential.

Section 3.1 introduces a transient analysis algorithm based on BDF3, which is a
part of the single shooting algorithm in Section 3.2. In both subsections, a solution
strategy is provided to solve nonlinear systems of equations using the local Newton
method. To achieve a better convergence behaviour, for instance, the implementation
of a damped Newton method is recommended. However, the essential calculations are
provided from the local Newton method.

3.1 Transient analysis using BDF3
Algorithm 1 (Kvasnicka, 2020, p. 40) is based on (Ascher and Petzold 1998, pp. 129–
130 and pp. 266–267) and shows for a constant step-size h > 0 an implementation to
solve the IVP of the DAE (1) regarding a consistent initial value x0 ¼ x 0ð Þ 2 Rm.
Here, BDF3 is used, whereby BDF1 and BDF2 are recursively used in the initial
phase. The coefficients of BDF1 to BDF3 are noted as a comment in Algorithm 1, in
accordance with (Ascher and Petzold, 1998, p. 130). One possibility to find xnþ1,

which fulfils the relationship in line 6 of Algorithm 1, is the application of the local
Newton method (Kvasnicka, 2020, p. 40), which is presented in the following.
Firstly, in accordance with DAE (1), the Jacobian matrix Jf xð Þ 2 Rm�m with
x :¼ ðe>; i>L ; i>UÞ>, is given as

Jf xð Þ ¼
eS � AR � JcRðA>

R � eÞ � A>
R

eS � AL
eS � AU

�A>
L 0 0

A>
U 0 0

0BBB@
1CCCA: (2)

Here, JcRðA>
R � eÞ denotes the Jacobian matrix of the function gR, evaluated in the

pointA>
R � e.

Secondly, the functionF : Rm ! Rm with
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F xnþ1ð Þ ¼
�

1
b 0 � h

�
XK
k¼0

ak � M � xnþ1�kð Þ
�
þ f xnþ1ð Þ þ b tnþ1ð Þ ;

is defined forK [ {1,2,3} and the BDF coefficients as given inAlgorithm 1. It can be proven that

JF xð Þ ¼ a0

b 0 � h
�Mþ Jf xð Þ

is the Jacobian matrix of F in x. Consequently, applying the local Newton method to solve
F(xnþ1) =0, the (‘þ 1)-th iterated approximation of xnþ1, is given as

x ‘þ1ð Þ
nþ1 ¼ x ‘ð Þ

nþ1 �
�
JFðx ‘ð Þ

nþ1Þ
��1

� Fðx ‘ð Þ
nþ1Þ :

Further, for example, the initial value x 0ð Þ
nþ1 ¼ xn can be chosen in the first Newton iteration,

depending on the solution xn in the previous time step.

3.2 Single shooting using BDF3
Algorithm 2 (Kvasnicka, 2020, p. 45) is based on (Kundert et al., 1990, pp. 65–70)
and shows for a constant step-size h > 0 an implementation to solve the BVP of the
DAE (1) with the condition x(0) = x(T), regarding a consistent initial value x 0ð Þ

0 2 Rm.
Here, the implementation of a single shooting is based on BDF3 and an approximate

Newton method to compute the initial value x ‘ð Þ
0 of the ‘-th shooting iteration loop

(Kvasnicka, 2020, pp. 42–45). According to (Kundert et al., 1990, pp. 65–70), the
approximate sensitivity matrix bSðx ‘ð Þ

0 Þ is used in line 11 of Algorithm 2 for adaption of
the initial value. Therefore, in line 10, the Jacobian matrix Jf(xnþ1) in accordance with
equation (2) is needed. In addition, the parameter Tolabs > 0 specifies the accuracy of
the BVP solution, according to line 3.
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4. Simulation and results
The proposed modelling and simulation strategy shall be tested on a NFC test problem
consisting of two coupled loops which can be seen in Figure 3. The geometry parameters from
the so-called Listener 1 antenna are given in (NFC Forum 2018, p. 91). On the ports of the loop
antennas, matching circuits as well as source and load impedances are connected, as shown in
Figure 4. Additionally, the passive receiving loop antenna is loaded with a full-wave rectifier
according to the standardised Listener 1 test device (NFC Forum, 2018, p. 79). The conductive
structure of the two coupled coils are modelled by bL,peec = 439 PEEC cells and nC,peec = 441
PEEC nodes applying the 1D PEEC method according to Section 2.1. The computation of the
matricesP,L0 andR0 are implemented as proposed in (Torchio et al., 2017, p. 2).

The diodes D1,. . .,D4 are modelled as Schottky diodes BAR43S with the Shockley diode
equation

iD uDð Þ ¼ IS � exp
uD

~n � UT

� 	
� 1

� 	
;

using the parameters kB = 1.380649 · 10−23 J/K, Tabs = 300K, qe ¼ 1:602 � 10�19 C;
UT ¼ kB�Tabs

qe
, ~n ¼ 1:4622 and IS= 0.4345 mA.

The circuit in Figure 4 is supplied by u0(t) = 3V·sin(2·π·f0·t), with f0 = 13.56MHz and can
be described by DAE (1) with m = 1326 unknowns. Moreover, equation (1) is an index-1
DAE in accordance with (Schwarz and Tischendorf 2005, p. 8) because loops contain
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capacitive elements only, i.e. pure C-loops (e.g. loop Cpeec,1�Cp1�Cpeec,127), does not lead to a
higher index. Hence, Algorithm 2 can be applied to solve the relating DAE (1). To achieve a
better convergence behaviour, the implementation of Algorithm 2 was adapted on the
damped Newton method like proposed in (Bank and Rose 1981, pp. 287–288). Additionally,
the application of Algorithm 2 needs for uR ¼ ðu>

R;peec;u
>
R;ext;lin; uD1 ; uD2 ; uD3 ; uD4Þ> the

Jacobian matrix

JcR uRð Þ ¼

R�1
peec 0 0

0 R�1
ext;lin 0

0 0 diag
diD‘

uD‘ð Þ
duD‘

 !
1# ‘# 4

0@ 1A

0BBBBBB@

1CCCCCCA ;

whereby diD uDð Þ
duD

¼ IS
~n�UT

� exp uD
~n�UT

� �
and Rext,lin is a diagonal matrix consisting of external

linear resistors.
The following computations are implemented in MATLAB®, and the simulation was run

on aWindows machine equipped with a 2-cores/4-threads processor (IntelVR CoreTM i7-6500U
CPU@2.50GHz) and 16GB RAM.

Firstly, the functionality of the single shooting method regarding Section 3.2 is
verified by transient analysis regarding Section 3.1 (Kvasnicka, 2020, pp. 73–78).
Further, the proposed formulation of the coupled field-circuit problem in terms of
DAE system solved by a single shooting method is verified on a linear circuit with a
time-harmonic PEEC solver. Therefore, the full-wave rectifier circuit connected
between nodes 128 and 441, as shown in Figure 4, is replaced by a linear load
resistance Rlin = 400X. Hence, the load for the passive NFC test antenna is given by
Cp2 and Rlin, only. This linearised circuit was computed by single shooting and
by a harmonic solver using the admittance method similar to (Ekman 2003,
pp. 54–56). Figure 5(a) shows that the numerical computation of both methods was

Figure 3.
Geometry of NFC test
problem

COMPEL
41,3

848



highly concordant for selected signals. The runtime of the harmonic solver was
0.198 s, and the single shooting method needed 121.5 s, whereby two shooting
iteration loops were necessary.

Finally, the signals presented in Figure 5(b) give some selected results for the original
nonlinear test problem shown in Figure 4. The runtime was 550.1 s for nine necessary
shooting iteration loops. In both cases, a single shooting was configured with the initial
value x 0ð Þ

0 ¼ 0. Due to the different time constants in the system, the transient analysis
needed more than 3400 cycle durations to compute the PSS solution. For example, forN = 30
grid points per period duration, this resulted in a speedup with a shooting of about 114
(Kvasnicka, 2020, pp. 74–76).

5. Conclusion and outlook
Based on the quasi-static PEEC method for conductive structures, the NFC problem
directly coupled with a nonlinear electrical circuit could be modelled. The proposed
MNA formulation is able to handle independent sources, linear elements and
nonlinear resistive elements. Finally, the entire circuit is described by means of a
DAE, and the computation of the PSS solution is implemented by a single shooting.
The proper functionality of the single shooting method was verified on a linear test
problem, and an efficient calculation of a test problem containing nonlinear resistive
elements could be shown.

Further investigations could inspect the behaviour of applications using general
periodic sources. Moreover, the introduced theory can be adapted by using PEEC for

Figure 4.
Equivalent circuit of

two coupled coils
using PEECmethod,
matching network
Cs1, Cs2, Cp1, Cp2, Rp

and nonlinear load
containing a

full-wave rectifier
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dielectric or magnetic structures. With regard to higher frequencies and
applications in the far-field further developments, including time retardation,
become necessary.
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