Search results

1 – 10 of 335
Article
Publication date: 21 October 2022

Longxiao Zhang and Ting Xie

The purpose of this paper is to explore the geometric parameter difference of the terrace-like structural transfer film under different working parameters [pressure and velocity…

92

Abstract

Purpose

The purpose of this paper is to explore the geometric parameter difference of the terrace-like structural transfer film under different working parameters [pressure and velocity (PV) values] and filled particle types (three fillers: SiO2, TiO2 and ZnO), and find the geometric parameter related to the wear of polytetrafluoroethylene (PTFE)-based composites.

Design/methodology/approach

PTFE composites were filled with SiO2, TiO2 and ZnO particles, and the morphology parameter of the PTFE composite transfer film under different PV values obtained from the rotary reciprocating pin-on-disk frictional tester was quantified by using a three-dimensional laser scanning microscope.

Findings

The results showed that the effective layer coverage rate and effective thickness of the transfer film had a good relationship with the wear of the three PTFE composites. On the whole, increasing the speed or load was helpful to increase the effective thickness of the three PTFE composite transfer films, but reduced the effective layer coverage rate. The greater the effective layer coverage rate and effective thickness of the transfer film, the better the wear resistance of the PTFE composites in the entire speed and load range.

Originality/value

This work will promote further understanding of the transfer film and lay a foundation for realizing its morphology regulation and improving the wear of the PTFE composites.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 May 2021

Fei Li, Yulin Yang, Laizhou Song and Lifen Liang

The purpose of this paper is to elucidate the tribology behavior of polytetrafluoroethylene (PTFE) incorporated with three types of nickel–phosphorus (Ni-P) particles (i.e. low…

Abstract

Purpose

The purpose of this paper is to elucidate the tribology behavior of polytetrafluoroethylene (PTFE) incorporated with three types of nickel–phosphorus (Ni-P) particles (i.e. low phosphorus [LP], medium phosphorus [MP] and high phosphorus [HP]) under dry sliding condition.

Design/methodology/approach

Ni-HP, Ni-MP and Ni-LP particles fabricated via an electroless plating process were incorporated into PTFE matrix with different additions to prepare Ni-P/PTFE composites (Ni-LP/PTFE, Ni-MP/PTFE and Ni-HP/PTFE). The tribology tests for these samples were carried out on a reciprocating ball-on-disc tribometer. The thermal stabilities, mechanical and tribological properties, morphologies and components of aforesaid Ni-P/PTFE composites were analyzed.

Findings

The marvelous effect of Ni-P incorporation on the simultaneous reduction in friction and wear of PTFE was corroborated.

Originality/value

Compared with that of pristine PTFE sample, the reduction on friction with a value of 27% and the reduction in wear about 94% for Ni-HP/PTFE composite is validated, which is probably related to the increased crystallinity and hardness due to the presence of Ni-P particles.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 March 2015

Shibo Wang, Bo Cao and Bing Teng

The purpose of this paper is to investigate the effect of hexagonal boron nitride (h-BN) and poly (phenyl p-hydroxybenzoate) (PHBA) on improving the torsional tribological…

Abstract

Purpose

The purpose of this paper is to investigate the effect of hexagonal boron nitride (h-BN) and poly (phenyl p-hydroxybenzoate) (PHBA) on improving the torsional tribological behavior of polytetrafluoroethylene (PTFE).

Design/methodology/approach

This paper investigates the torsional tribological behavior of PTFE composites filled with h-BN and PHBA under different angular displacements with a plane-on-plane torsional friction tester. The worn surface of PTFE composites was investigated by using a scanning electron microscope.

Findings

The shape of T–Θ curves of PTFE composites was influenced by both content fillers and torsional angule. The material with a higher coefficient of sliding friction exhibited the larger torsional angle under which the torsional regime transited from a partial slip to a gross slip. PTFE composites filled with 20 weight per cent PHBA and 10 weight per cent h-BN showed the best anti-wear properties. The specific wear rate of composites exhibits a negative correlation with material hardness. The wear volume loss presents a positive correlation with friction dissipation energy. The specific wear rate of all composites decreased with increasing torsional angle. The dominant wear mechanism of pure PTFE was adhesive wear. The slight plastic flow and plowing occurred on the worn surfaces of PTFE composites because of the higher hardness of composites and the lubrication of h-BN particles with layer crystal structure.

Originality/value

This paper put forward a kind of PTFE composite with low torsional wear rate, which can be used in the sliding slewing bearing or the center plate of a bogie.

Details

Industrial Lubrication and Tribology, vol. 67 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 March 2023

Yanhong Yan, Chengwen Yang, Wenbin Dong, Pengjuan Yan, Peilong Wang, Xiaocui Yan and Zhining Jia

This paper aims to investigate the tribological properties of polytetrafluoroethylene (PTFE) composites modified by nano-serpentine and nano-lanthanum oxide in a seawater…

70

Abstract

Purpose

This paper aims to investigate the tribological properties of polytetrafluoroethylene (PTFE) composites modified by nano-serpentine and nano-lanthanum oxide in a seawater environment.

Design/methodology/approach

In this paper, seven PTFE composites were prepared by unified design method and vacuum thermoforming method, and their hardness, water absorption and tribological properties were measured under seawater environment. The modification effects and thermal stability of the materials were analyzed by Fourier transform infrared spectroscopy, thermal gravimetry and differential scanning calorimetry. This paper analyzed the wear mechanism of PTFE composites by scanning electron microscopy and energy spectroscopy.

Findings

The results showed that the hardness of the PTFE composites were all improved, but the water absorption was increased with the increase of additives. The modification of nano-serpentine was successful and the thermal stability of PTFE composites was better. The lowest coefficient and minimum wear rate are 0.0267 and 8.67 × 10−5 · mm3 · (N · m)−1 respectively, which is 34.9% and 76% less than the pure PTFE.

Originality/value

The analysis showed that the wear mechanism of PTFE composites was abrasive wear and a small amount of adhesive wear, and when the additive content was appropriate, it easily formed a transfer film on the surface mating parts.

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 January 2022

Juan Wang, Xiongrong Huang, Wei Wang, Haosheng Han, Hongyu Duan, Senlong Yu and Meifang Zhu

The purpose of this study is to determine the tribological behavior and wear mechanism of a polytetrafluoroethylene (PTFE)/polyester (PET) fabric composite for application as a…

Abstract

Purpose

The purpose of this study is to determine the tribological behavior and wear mechanism of a polytetrafluoroethylene (PTFE)/polyester (PET) fabric composite for application as a self-lubricating liner suitable for high-speed and low-load friction conditions.

Design/methodology/approach

The effects of different loads and sliding speeds on the friction coefficients and wear characteristics of the composite were studied using reciprocating friction tests. Scanning electron microscopy, extended depth-of-field microscopy, and energy-dispersive X-ray spectrometry was used to analyze the worn surface morphology, wear depth and elemental content of the lubrication films, respectively.

Findings

The friction coefficient curves of the composites presented a long-term steady wear stage under different sliding conditions. With increasing sliding speed, the friction coefficient and wear depth of the composite slowly increased. The film-forming mechanism of the composite revealed that the PTFE/PET ply yarn on the composite surface formed complete PTFE lubrication films at the initial sliding stage.

Originality/value

The PTFE/PET fabric composite maintained good friction stability and high-speed adaptability, which demonstrates that the composite has broad application prospects as a highly reliable self-lubricating bearing liner with a long lifespan.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 February 2015

Lorena Deleanu and Constantin Georgescu

The paper aims to present results on the friction and the wear of polytetrafluoroethylene (PTFE) and eight commercially available composites with PTFE matrix, for tests done on…

Abstract

Purpose

The paper aims to present results on the friction and the wear of polytetrafluoroethylene (PTFE) and eight commercially available composites with PTFE matrix, for tests done on shoe/roller tribotester with water lubrication in open circuit. There are pointed out particular tribological processes within the superficial layers of the composites with the help of optical microscopy.

Design/methodology/approach

Analysing the tribological behaviour of eight grades of PTFE composites sliding in water on shoe/roller tribotester.

Findings

Good results of wear behaviour under water lubrication for all the composites. PTFE exhibits severe wear under the tested regime.

Originality/value

The research could support PTFE composite application for water lubricated systems.

Details

Industrial Lubrication and Tribology, vol. 67 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 August 2009

Xue‐Bin Yang, Xin‐Qiao Jin, Zhi‐Min Du, Tian‐Sheng Cui and Shao‐Kan Yang

The purpose of this paper is to investigate the frictional behavior of polytetrafluoroethylene (PTFE) composites under oil‐free sliding conditions.

Abstract

Purpose

The purpose of this paper is to investigate the frictional behavior of polytetrafluoroethylene (PTFE) composites under oil‐free sliding conditions.

Design/methodology/approach

The friction force and power consumption of pressure packing seals, which were, respectively, made of common filled PTFE, 30 wt% CF (carbon fiber) + PTFE and C/C (carbon/carbon) + PTFE, are studied in a reciprocating oil‐free compressor arrangement. Their coefficient of friction is tested on a block‐on‐ring type tribometer.

Findings

The results indicate that influence of mean sliding velocity on filled PTFE composites is apparently more predominant than the others. The friction force curvilinear path of 30 wt% CF+PTFE is hardly influenced by changing crankshaft turn angle. For C/C+PTFE, the effect of mean piston velocity on friction force is not evident. The results also indicate that the friction coefficient of C/C+PTFE is lower than that of 30 wt% CF+PTFE if their applied normal force exceeds 9.8 N. Furthermore, their variation curve of friction force is little different and the power consumption of C/C+PTFE is slightly higher than that of 30 wt% CF+PTFE.

Research limitations/implications

Neither the effect of real contact area on friction coefficient measured in a tribometer nor the influence of the temperature on friction force and power tested in a compressor is not taken into consideration here.

Practical implications

Owing to its good mechanical performances and frictional behaviors, C/C+PTFE is an optimum and promising material under conditions with sealing pressure up to 10 MPa and sliding velocity exceeding 4.0 m/s.

Originality/value

A novel material called C/C+PTFE is considered to make packing rings for oil‐free reciprocating compressors and its friction behaviour is tested on a refitted compressor.

Details

Industrial Lubrication and Tribology, vol. 61 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 August 2020

Wei Feng, Lei Yin, Yanfeng Han, Jiaxu Wang, Ke Xiao and Junyang Li

This paper aims to explore the possibility of converting the nitrile butadiene rubber (NBR) water-lubricated bearing material into a self-lubricating bearing material by the…

Abstract

Purpose

This paper aims to explore the possibility of converting the nitrile butadiene rubber (NBR) water-lubricated bearing material into a self-lubricating bearing material by the action of polytetrafluoroethylene (PTFE) particles and water lubrication.

Design/methodology/approach

A group of experimental studies was carried out on a ring-on-block friction test. The physical properties, tribological properties and interface structure of PTFE-NBR self-lubricating composites filled with different percentages of PTFE particles were investigated.

Findings

The experimental results indicated that the reduction in friction and wear is a result of the formation of the lubricating film on the surface of the composites. The lubricating film was formed of a large amount of PTFE particles continuously supplied under water lubrication conditions and the PTFE particles here can greatly enhance the load capacity and lubrication performance.

Originality/value

In this study, the tribological properties of PTFE particles added to the NBR water-lubricated bearing materials under water lubrication were investigated experimentally, and the research was carried out by a ring-on-block friction test. It is believed that this study can provide some guidance for the application of PTFE-NBR self-lubricating.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2020-0187/

Details

Industrial Lubrication and Tribology, vol. 73 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 June 2022

Jingfu Song, Gai Zhao, Qingjun Ding and Ying Yang

The purpose of this paper is to investigate the effect of SiO2 on the tribological properties of polytetrafluoroethylene (PTFE) composites from an atomic level.

Abstract

Purpose

The purpose of this paper is to investigate the effect of SiO2 on the tribological properties of polytetrafluoroethylene (PTFE) composites from an atomic level.

Design/methodology/approach

Effect of SiO2 on the tribological properties of PTFE sliding against Cu was studied by molecular dynamics (MD) simulations to explore the inherent mechanisms from an atomic level.

Findings

SiO2 had a higher interaction energy with PTFE than copper, which contributed to an increase of interfacial temperature and velocity with severe adhesive wear on the PTFE molecules.

Originality/value

This study reveals the mechanism of SiO2 on the friction and wear behavior of PTFE by MD simulation.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2016

Shun Wang, Qingchang Tan and Zunquan Kou

The purpose of this paper was to construct lubrication model closer to the fact of thrust bearings and to calculate the bearings characteristics of lubrication for understanding…

Abstract

Purpose

The purpose of this paper was to construct lubrication model closer to the fact of thrust bearings and to calculate the bearings characteristics of lubrication for understanding how structures influence bearings performances and, importantly, what can be the most beneficial. Large-scale composite thrust bearings with Polytetrafluoroethylene (PTFE)-faced sector pad backed by steel base are used increasingly in equipment. But there are plenty of puzzled problems in design and application.

Design/methodology/approach

The authors established a 3D thermal elastohydrodynamic lubrication (TEHL) model. Oil film was formulated by Reynolds equation for pressure, and by energy equation for temperature varying through oil film thickness. Meanwhile, pad temperature was formulated by solid heat transfer equation. Elastic and thermal deformations of pad surface were calculated. Viscosity and density of oil were valued separately under different pressure and temperature. Load balance was considered as well as overturning moment balance. Finite difference method was applied to discrete these equations.

Findings

PTFE layer and steel base have either helpful or detrimental impact on contact strength and full film lubrication of thrust bearing depending on their relationship in thickness. Temperature lag between middle layer of steel base and pad surface depends on PTFE layer, but not on the steel base. PTFE layer thickness should be considered when alarming threshold value of the bearings temperature is chosen.

Originality/value

Three-dimensional TEHL model of large-scale composite thrust bearings was established, which included more factors close to the actual. Conclusions were drawn. These proposals are helpful to design the bearings.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 335