Search results

1 – 10 of over 30000
Article
Publication date: 13 May 2020

Ying Xia

This study aims to analyze the dynamic monitoring of deformation damage of steel structure buildings in long-term use. Although the steel structure building has the advantage of…

Abstract

Purpose

This study aims to analyze the dynamic monitoring of deformation damage of steel structure buildings in long-term use. Although the steel structure building has the advantage of high structural strength, it will be deformed after being affected by factors such as corrosion and impact during long-term use, and which will affect building safety, especially the public building facilities. The dynamic monitoring of its security is an indispensable means.

Design/methodology/approach

This paper briefly introduced the principle of building information modeling (BIM)-based steel structure building information monitoring and the dynamic information monitoring system based on this principle. Then the monitoring system was used to analyze an operational steel structure suspension bridge in Xinxiang City, Henan Province, China, and compared it with the monitoring system based on back propagation (BP) neural network.

Findings

The results showed that the fitting degree of the dynamic deformation displacement data processed by BIM-based monitoring system was higher than that processed by BP-based monitoring system. Based on the comprehensive comparison of the dynamic data of all monitoring points, the BIM-based monitoring system had higher accuracy of deformation displacement monitoring and reliability of structural safety evaluation.

Originality/value

In summary, the BIM-based steel structure building monitoring system can effectively monitor the dynamic information of steel structure information.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 June 2023

Sou-Sen Leu, Kuang-Jen Huang, Cathy Chang-Wei Hung and Pei-Lin Wu

In recent years, cost overrun becomes a common problem in steel building construction projects. The average percentage can vary widely depending on the project type, size…

Abstract

Purpose

In recent years, cost overrun becomes a common problem in steel building construction projects. The average percentage can vary widely depending on the project type, size, complexity and location. The steel structure change ratio in Taiwan is from 1 to 18% in statistics. The contractors always put every possible effort into preventing or mitigating project cost overruns, and one of the approaches is an accurate cost overrun risk estimate. Traditional project cost overrun risk assessment models mainly focus on macro-level evaluation and may not function well for the project-specific level (micro-level). This study creates a network-like connection model between the outcome (i.e. cost overrun risk) and the associated root causes in which the project status evaluation checklists of design, manufacturing, construction and interfaces are used to evaluate the checklists' influences through the Bayesian network (BN) composed by intermediate causes.

Design/methodology/approach

Due to the constraint of data availability, BN nodes, relationships and conditional probabilities are defined to establish a BN-based steel building project cost overrun assessment model following the knowledge of experts. Because of the complexity of the BN, the construction of the BN structure is first to build BN's fault tree (FT) hierarchy. And then, basic BN framework is constructed by the transformation of the FT hierarchy. Furthermore, some worthwhile additional arcs among BN nodes are inserted if necessary. Furthermore, conditional probability tables (CPTs) among BN nodes are explored by experts following the concept of the ranked node. Finally, the BN-based model was validated against the final cost analysis reports of 15 steel building projects done in Taiwan and both were highly consistent. The overall BN-based model construction process consists of three steps: (1) FT construction and BN framework transformation, (2) CPT computation and (3) model validation.

Findings

This study established a network-like bridge model between the outcome (i.e. cost overrun risk) and the root causes in a network of which cost influences are evaluated through the project-specific status evaluation checklists of design, manufacturing, construction and interfaces. This study overcame several limitations of the previous cost overrun risk assessment models: (1) few past research support assessment of cost overrun based on real-time project-owned data and (2) the traditional causal models inadequately depict interdependencies among influence factors of cost overrun at the network. The main influence factors of the cost overrun risk at the steel building projects in Taiwan were also examined using sensitivity analysis. The main root causes of cost overrun in steel building projects are design management and interface integration.

Originality/value

The proposed model belongs to the project-specific causal assessment model using real-time project-owned status checklist data as input. Such a model was seldom surveyed in the past due to the complicated interdependence among causes in the network. For practical use, a convenient and simple regression equation was also developed to forecast the cost overrun risk of the steel building project based on the root causes as input. Based on the analysis of cost overrun risk and significant influence factors, proper tailor-made preventive strategies are established to reduce the occurrence of cost overrun at the project.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 December 2021

Yu Liu, Shan-Shan Huang and Ian Burgess

In order to improve the robustness of bare-steel and composite structures in fire, a novel axially and rotationally ductile connection has been proposed in this paper.

129

Abstract

Purpose

In order to improve the robustness of bare-steel and composite structures in fire, a novel axially and rotationally ductile connection has been proposed in this paper.

Design/methodology/approach

The component-based models of the bare-steel ductile connection and composite ductile connection have been proposed and incorporated into the software Vulcan to facilitate global frame analysis for performance-based structural fire engineering design. These component-based models are validated against detailed Abaqus FE models and experiments. A series of 2-D bare-steel frame models and 3-D composite frame models with ductile connections, idealised rigid and pinned connections, have been created using Vulcan to compare the fire performance of ductile connection with other connection types in bare-steel and composite structures.

Findings

The comparison results show that the proposed ductile connection can provide excellent ductility to accommodate the axial deformation of connected beam under fire conditions, thus reducing the axial forces generated in the connection and potentially preventing the premature brittle failure of the connection.

Originality/value

Compared with conventional connection types, the proposed ductile connection exhibits considerable deformability, and can potentially enhance the robustness of structures in fire.

Details

Journal of Structural Fire Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 8 February 2024

Akhil Khajuria, Anurag Misra and S. Shiva

An experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active…

Abstract

Purpose

An experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active gas (MAG) and cold metal transfer (CMT)-MAG weldments was undertaken.

Design/methodology/approach

Mechanical properties and microstructure of MAG and CMT-MAG weldments of two E410 steels with varying content of carbon were compared using standardized mechanical testing procedures, and conventional microscopy.

Findings

0.04wt.%C steel had strained ferritic and cementite sub-structures in blocky shape and large dislocation density, while 0.17wt.%C steel consisted of pearlite and polygonal ductile ferrite. This effected yield strength (YS), and microhardness being larger in 0.04wt.%C steel, %elongation being larger in 0.17wt.%C steel. Weldments of both E410 steels obtained with CMT-MAG performed better than MAG in terms of YS, ultimate tensile strength (UTS), %elongation, and toughness. It was due to low heat input of CMT-MAG that resulted in refinement of weld metal, and subzones of heat affected zone (HAZ).

Originality/value

A substantial improvement in YS (∼9%), %elongation (∼38%), and room temperature impact toughness (∼29%) of 0.04wt.%C E410 steel is achieved with CMT-MAG over MAG welding. Almost ∼10, ∼12.5, and ∼16% increment in YS, %elongation, and toughness of 0.17wt.%C E410 steel is observed with CMT-MAG. Relatively low heat input of CMT-MAG leads to development of fine Widmanstätten and acicular ferrite in weld metal and microstructural refinement in HAZ subzones with nearly similar characteristics of base metal.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 June 2001

P. Puomi, H.M. Fagerholm and A. Sopanen

The aim of this work was to investigate which parameters affect the long‐term performance of coil coated galvanised steel sheet. Therefore, the paint adhesion and corrosion…

1384

Abstract

The aim of this work was to investigate which parameters affect the long‐term performance of coil coated galvanised steel sheet. Therefore, the paint adhesion and corrosion resistance of selected painted pre‐treated galvanised steel substrates were studied. The systems investigated included chromate‐free pre‐treatments and primers. The polymer coated panels were tested by using: T‐bend, combined cross cut and adhesion, prohesion and QUV‐A tests. The surface energy of the painted panels was determined by contact angle measurements and outdoor testing of the panels was also initiated. The test results showed that the primer was the most important parameter for painted metal alloy coated steel, but the long‐term performance of the system also depends on the compatibility of all four layers, i.e. substrate, pre‐treatment, primer and topcoat.

Details

Anti-Corrosion Methods and Materials, vol. 48 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 September 1967

S. Guruviah and K.S. Rajagopalan

Use of aluminium is coming into vogue in the canning industry. However, the very much higher cost of aluminium than tin plate inhibits the scope for substitution of tin plate by…

Abstract

Use of aluminium is coming into vogue in the canning industry. However, the very much higher cost of aluminium than tin plate inhibits the scope for substitution of tin plate by aluminium. It is therefore of interest to examine whether steel coated with aluminium by any of the known methods is suitable for manufacture of containers for canned products. Aluminium‐coated steel can be considered only if the coating has a more negative potential than the base metal. In a study of the behaviour of sprayed aluminium coatings on mild steel in sodium chloride solutions at different pHs, Ross has pointed out that sprayed aluminium (99.5%) is more negative than steel in neutral and alkaline solutions. In this paper, the potential relationships between steel, steel sprayed with aluminium, and aluminised steel in some organic acids commonly present in food stuffs are discussed.

Details

Anti-Corrosion Methods and Materials, vol. 14 no. 9
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 8 April 2022

Fuminobu Ozaki and Takumi Umemura

In this study, engineering stress-strain relationships considering an effect of strain rate on steel materials at elevated temperatures were formulated and a simplified analytical…

Abstract

Purpose

In this study, engineering stress-strain relationships considering an effect of strain rate on steel materials at elevated temperatures were formulated and a simplified analytical model using a two-dimensional beam element to analytically examine the effect of strain rate on the load-bearing capacity and collapse temperature was proposed.

Design/methodology/approach

The stress-strain relationships taking into account temperature, strain, and strain rate were established based on the past coupon test results with strain rate as the test parameter. Furthermore, an elasto-plastic analysis using a two-dimensional beam element, which considered the effect on strain rate, was conducted for both transient- and steady-state conditions.

Findings

The analytical results agreed relatively well with the test results, which used small steel beam specimens with a rectangular cross-section under various heating rates (transient-state condition) and deformation rates (steady-state condition). It was found that the bending strength and collapse temperature obtained from the parametric analyses agreed relatively well with those evaluated using the effective strength obtained from the coupon tests with strain equal to 0.01 or 0.02 under the fast strain rates.

Originality/value

The effect of stress degradation, including the stress-strain relationships at elevated temperature, was mitigated by considering the effect of strain rate on the analytical model. This is an important point to consider when considering the effect of strain rate on steel structural analysis at elevated temperatures to maintain analytical stability unaccompanied by the stress degradation.

Article
Publication date: 8 May 2018

Pankaj Kumar and J. Maiti

The purpose of this paper is to evaluate the technical efficiency and productivity changes in the integrated steel plants in India over a period of five years.

Abstract

Purpose

The purpose of this paper is to evaluate the technical efficiency and productivity changes in the integrated steel plants in India over a period of five years.

Design/methodology/approach

Since this evaluation of integrated steel plants needs consideration of multiple input and output factors, data envelopment analysis (DEA) has been employed including bootstrapping (to account for statistical noise) to evaluate the relative efficiency of the steel manufacturing units. The efficiency and Malmquist productivity indices of a sample of ten integrated steel plants producing around 55 percent of the industry’s output were determined for the period 2008-2013. The results of these changes were further categorized according to the management control, route followed to produce crude steel, size and age of these steel plants, for gaining insights.

Findings

The study finds that private sector steel plants with larger capacity and which have adopted the latest and most modern technologies are more efficient and productive over the study period.

Practical implications

Public sector steel plants should therefore be provided with more autonomy and delegation of power and should be agiler in responding to market requirements as well as increasing their installed capacities to be competitive in technical efficiency and productivity as well as profitability in the long term to ensure sustainable achievements.

Originality/value

Productivity changes over time, both with respect to technological and efficiency changes, for the Indian integrated steel plants producing comparable products using DEA.

Details

International Journal of Quality & Reliability Management, vol. 35 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 1 September 1979

M.A. Adams

Background In the language of the steel industry, the term coated steel means, for all practical purposes, mild steel sheet or strip which is coated before it leaves the steel

Abstract

Background In the language of the steel industry, the term coated steel means, for all practical purposes, mild steel sheet or strip which is coated before it leaves the steel mill. Various coatings are employed depending upon product end use but basically they divide up into metallic coatings such as tin, zinc or aluminium; and organic coatings which are essentially paints or plastic films. Organic coatings are very often applied on top of metallic coatings, so that in the most advanced coated products there may be as many as five separate layers of material between the underlying steel and the exposed outer surface.

Details

Anti-Corrosion Methods and Materials, vol. 26 no. 9
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 5 February 2024

Dongsheng Wang, Xiaohan Sun, Yingchang Jiang, Xueting Chang and Xin Yonglei

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms…

Abstract

Purpose

Stainless-clad bimetallic steels (SCBS) are widely investigated in some extremely environmental applications areas, such as polar sailing area and tropical oil and gas platforms areas, because of their excellent anticorrosion performance and relatively lower production costs. However, the properties of SCBS, including the mechanical strength, weldability and the anticorrosion behavior, have a direct relation with the manufacturing process and can affect their practical applications. This paper aims to review the application and the properties requirements of SCBS in marine environments to promote the application of this new material in more fields.

Design/methodology/approach

In this paper, the manufacturing process, welding and corrosion-resistant properties of SCBS were introduced systematically by reviewing the related literatures, and some results of the authors’ research group were also introduced briefly.

Findings

Different preparation methods, such as rolling composite, casting rolling composite, explosive composite, laser cladding and plasma arc cladding, as well as the process parameters, including the vacuum degree, rolling temperature, rolling reduction ratio, volume ratios of liquid to solid, explosive ratio and the heat treatment, influenced a lot on the properties of the SCBS through changing the interface microstructures. Otherwise, the variations in rolling temperature, pass, reduction and the grain size of clad steel also brought the dissimilarities of the mechanical properties, microhardness, bonding strength and toughness. Another two new processes, clad teeming method and interlayer explosive welding, deserve more attention because of their excellent microstructure control ability. The superior corrosion resistance of SCBS can alleviate the corrosion problem in the marine environment and prolong the service life of the equipment, but the phenomenon of galvanic corrosion should be noted as much as possible. The high dilution rate, welding process specifications and heat treatment can weaken the intergranular corrosion resistance in the weld area.

Originality/value

This paper summarizes the application of SCBS in marine environments and provides an overview and reference for the research of stainless-clad bimetallic steel.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 30000