Search results

1 – 10 of 25
Article
Publication date: 10 December 2018

Sunil Kumar Tiwari, Sarang Pande, Santosh M. Bobade and Santosh Kumar

The purpose of this paper is to propose and develop PA2200-based composite powder containing 0-15 Wt.% magnesium oxide before directly using it in selective laser sintering (SLS…

Abstract

Purpose

The purpose of this paper is to propose and develop PA2200-based composite powder containing 0-15 Wt.% magnesium oxide before directly using it in selective laser sintering (SLS) machine to produce end-use products for low-volume production in the engineering applications with keen focus to meet the functional requirements which rely on material properties.

Design/methodology/approach

The methodology reported emphasises PA2200-based composite powder containing 0-15 Wt.% magnesium oxide development for SLS process which starts with preparation and characterisation of composite material, thermal and rheological study of composite material to decide optimum process parameters for SLS process machine to get optimal part properties. Further, to verify composite material properties, a conventional casting methodology is used. The composition of composite materials those possessing good properties are further selected for processing in SLS process under optimal processing parameters.

Findings

The process parameters of SLS machine are material-dependent. The effect of temperature in X-ray diffraction profile is negligible in the case of magnesium oxide reinforced PA2200 composite material. The cyclic heating of material increases melting point temperature, this grounds to modify part bed temperature of material every time before processing on SLS machine to uphold build part properties, as well as material. With the rise in temperature, the Melt flow index and rheological property of materials change. The magnesium oxide reinforced PA2200 composite material has high thermal stability than pure PA2200 material. By the addition of small quantity of magnesium oxide, most of the mechanical property and flammability property improves while elongation at break (percentage) decreases significantly.

Practical implications

The proposed PA2200-based composite powder containing 0-15 Wt.% magnesium oxide material development system and casting metrology to verify developed material properties will be very useful to develop new composite material for SLS process with use of less material. The developed methodology has proven, especially in the case where non-experts or student need to develop composite material for SLS process according to the property requirement of applications.

Originality/value

Unlike earlier composite material development methodology, the projected methodology of polymer-based composite material and confirmation of material properties instead of commencing SLS process provides straight forward means for SLS process composite materials development with less use of the material and period of time.

Details

Rapid Prototyping Journal, vol. 25 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 August 2024

Raphael Timothy Steffen, Michael Robert Tucker, Francesco Sillani, Denis Schütz and Markus Bambach

For additive manufacturing (AM) through laser-based powder bed fusion of polymers (PBF-LB/P), accurate characterization of powder flowability is vital for achieving high-quality…

Abstract

Purpose

For additive manufacturing (AM) through laser-based powder bed fusion of polymers (PBF-LB/P), accurate characterization of powder flowability is vital for achieving high-quality parts. However, accurately characterizing feedstock flowability presents challenges because of a lack of consensus on which tests to perform and the diverse forces and mechanisms involved. This study aims to undertake a thorough investigation into the flowability of eight feedstock materials for PBF-LB/P at different temperatures using various techniques.

Design/methodology/approach

For ambient temperature assessments, established metrics such as avalanche angle and Hausner ratio, along with the approximated flow function coefficient (FFCapp), are used. The study then focuses on the influence of elevated temperatures representative of in-process conditions. FFCapp and differential scanning calorimetry (DSC) are performed and analyzed, followed by a correlation analysis as a holistic approach to identify key aspects for flowability. Furthermore, two feedstock materials are compared with a previous study to connect the present findings to PBF-LB/P processing.

Findings

The study revealed intrinsic material properties such as mechanical softening near the melting point to become significant. This partially explains why certain powders with poor ambient temperature flowability are consistently demonstrated to produce high-quality parts. FFCapp and thermal characterization through DSC are identified as critical metrics for optimizing feedstock material characteristics across temperature ranges.

Originality/value

Previous studies emphasized specific characterizations of feedstock material at ambient temperature, presented a limited materials selection or focused on metrics such as shape factors. In contrast, this study addresses a partially understood aspect by examining the critical role of temperature in governing feedstock material flowability. It advocates for the inclusion of temperature variables in flowability analyses to closely resemble the PBF-LB/P process, which can be applied to material design, selection and process optimization.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 January 2020

James Robert Wingham, Robert Turner, Joanna Shepherd and Candice Majewski

X-Ray-computed micro-tomography (micro-CT) is relatively well established in additive manufacturing as a method to determine the porosity and geometry of printed parts and, in…

294

Abstract

Purpose

X-Ray-computed micro-tomography (micro-CT) is relatively well established in additive manufacturing as a method to determine the porosity and geometry of printed parts and, in some cases, the presence of inclusions or contamination. This paper aims to demonstrate that micro-CT can also be used to quantitatively analyse the homogeneity of micro-composite parts, in this case created using laser sintering (LS).

Design/methodology/approach

LS specimens were manufactured in polyamide 12 with and without incorporation of a silver phosphate glass additive in different sizes. The specimens were scanned using micro-CT to characterise both their porosity and the homogeneity of dispersion of the additive throughout the volume.

Findings

This work showed that it was possible to use micro-CT to determine information related to both porosity and additive dispersion from the same scan. Analysis of the pores revealed the overall porosity of the printed parts, with linear elastic fracture mechanics used to identify any pores likely to lead to premature failure of the parts. Analysis of the additive was found to be possible above a certain size of particle, with the size distribution used to identify any agglomeration of the silver phosphate glass. The particle positions were also used to determine the complete spatial randomness of the additive as a quantitative measure of the dispersion.

Practical implications

This shows that micro-CT is an effective method of identifying both porosity and additive agglomeration within printed parts, meaning it can be used for quality control of micro-composites and to validate the homogeneity of the polymer/additive mixture prior to printing.

Originality/value

This is believed to be the first instance of micro-CT being used to identify and analyse the distribution of an additive within a laser sintered part.

Details

Rapid Prototyping Journal, vol. 26 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 June 2016

Jatender Pal Singh, Pulak M. Pandey and Anita Kamra Verma

Scaffolds are essentially required to have open porous structure for facilitating bone to grow. They are generally placed on those bone defective/fractured sites which are more…

Abstract

Purpose

Scaffolds are essentially required to have open porous structure for facilitating bone to grow. They are generally placed on those bone defective/fractured sites which are more prone to compressive loading. Open porous structure lacks in strength in comparison to solid. Selective laser sintering (SLS) process is prominently used for fabrication of polymer/composite scaffolds. So, this paper aims to study for fabrication of three-dimensional open porous scaffolds with enhanced strength, process parameters of SLS of a biocompatible material are required to be optimized.

Design/methodology/approach

Regular open porous structures with suitable pore size as per computer-aided design models were fabricated using SLS. Polyamide (PA-2200) was used to fabricate the specimen/scaffold. To optimize the strength of the designed structure, response surface methodology was used to design the experiments. Specimens as per ASTM D695 were fabricated using SLS and compressive testing was carried out. Analysis of variance was done for estimating contribution of individual process parameters. Optimized process parameters were obtained using a trust region algorithm and correlated with experimental results. Accuracy of the fabricated specimen/scaffold was also assessed in terms of IT grades. In vitro cell culture on the fabricated structures confirmed the biocompatibility of polyamide (PA-2200).

Findings

Optimized process parameters for open cell process structures were obtained and confirmed experimentally. Laser power, hatch spacing and layer thickness have contributed more in the porous part’s strength than scan speed. The accuracy of the order of IT16 has been found for all functional dimensions. Cell growth and proliferation confirmed biocompatibility of polyamide (PA-2200) for scaffold applications.

Originality/value

This paper demonstrates the biocompatibility of PA-2200 for scaffold applications. The optimized process parameters of SLS process for open cell structure having pore size 1.2 × 1.2 mm2 with strut diameter of 1 mm have been obtained. The accuracy of the order of IT16 was obtained at the optimized process factors.

Details

Rapid Prototyping Journal, vol. 22 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 June 2021

Anna Liebrich, Horst-Christian Langowski, Regina Schreiber and Bernd R. Pinzer

This study aims to investigate the effect of the material thickness and build orientation on the mass transfer of low molecular weight substances through polyamide 12 (PA12…

87

Abstract

Purpose

This study aims to investigate the effect of the material thickness and build orientation on the mass transfer of low molecular weight substances through polyamide 12 (PA12) structures produced by laser sintering (LS).

Design/methodology/approach

Disc-shaped PA12 sheets having a nominal thickness ranging from 700 to 2,000 µm were built in horizontal, vertical and diagonal orientations and their permeation properties to oxygen and water vapor were measured. The structural properties of the sheets were examined by X-ray micro-computed tomography, differential scanning calorimetry and polarized light microscopy.

Findings

All the LS sheets that were investigated had water vapor and oxygen permeation coefficients that are in the range of those of PA12 produced by traditional manufacturing technologies. Despite significant differences in the porosity characteristics, the permeation properties of sheets built in different orientations were similar. The pores seem to have no measurable effect on the mass transfer rates in the sheets, and the transport processes seem to predominantly follow the rules of a regular solution-diffusion mechanism. The results showed a non-significant trend toward thickness-dependent permeation coefficients, which agrees with the observed differences in the crystal structures of the sheets.

Practical implications

The results are an important basis for the qualification of LS technology for direct manufacturing in applications requiring special barrier performance.

Originality/value

This study provides new information on mechanisms of mass transport through LS PA12 and the effect of the material thickness and build orientation. Furthermore, the results enhance understanding of the structural properties of thin polymeric sheets produced by LS.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 October 2014

Karel Kellens, Renaldi Renaldi, Wim Dewulf, Jean-pierre Kruth and Joost R. Duflou

This paper aims to present parametric models to estimate the environmental footprint of the selective laser sintering (SLS)’ production phase, covering energy and resource…

2047

Abstract

Purpose

This paper aims to present parametric models to estimate the environmental footprint of the selective laser sintering (SLS)’ production phase, covering energy and resource consumption as well as process emissions. Additive manufacturing processes such as (SLS) are often considered to be more sustainable then conventional manufacturing methods. However, quantitative analyses of the environmental impact of these processes are still limited and mainly focus on energy consumption.

Design/methodology/approach

The required Life Cycle Inventory data are collected using the CO2PE! – Methodology, including time, power, consumables and emission studies. Multiple linear regression analyses have been applied to investigate the interrelationships between product design features on the one hand and production time (energy and resource consumption) on the other hand.

Findings

The proposed parametric process models provide accurate estimations of the environmental footprint of SLS processes based on two design features, build height and volume, and help to identify and quantify measures for significant impact reduction of both involved products and the supporting machine tools.

Practical implications

The gained environmental insight can be used as input for ecodesign activities, as well as environmental comparison of alternative manufacturing process plans.

Originality/value

This article aims to overcome the current lack of environmental impact models, covering energy and resource consumption as well as process emissions for SLS processes.

Article
Publication date: 12 November 2020

James Robert Wingham, Maha Omran, Joanna Shepherd and Candice Majewski

The use of laser sintering (LS) in the medical sector has increased dramatically in recent years. With the move towards direct use of these parts in clinical applications, there…

Abstract

Purpose

The use of laser sintering (LS) in the medical sector has increased dramatically in recent years. With the move towards direct use of these parts in clinical applications, there is a greater need to understand the effects of standard processes on the part properties. The purpose of this study is to determine the effect that steam sterilisation has on the mechanical properties of LS polyamide 12 parts.

Design/methodology/approach

The research presented here focusses on the effect of a single steam sterilisation cycle on the mechanical properties of polyamide 12 parts manufactured using LS. The influence of water content on the properties was investigated, with additional drying steps trialled to establish the potential to reverse any changes observed and to determine their root cause.

Findings

The results show that steam sterilisation has a significant effect on the mechanical properties of LS polyamide 12 parts, with a 39% reduction in elastic modulus, a 13% decrease in ultimate tensile strength and a 64% increase in the elongation at break. These properties were also all found to correlate with the water content, suggesting that this was the cause of the difference. The original properties of the parts were able to be recovered after oven drying.

Practical implications

These results show that with an additional drying step, LS polyamide 12 parts can be steam sterilised with no effect on the mechanical properties.

Originality/value

This is believed to be the first investigation into the effects of steam sterilisation in isolation on LS polyamide 12 parts, the first instance of drying parts to recover mechanical properties and the first instance of multiple water content measurements being directly linked to the mechanical properties.

Details

Rapid Prototyping Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 August 2024

Valentina Vendittoli, Wilma Polini, Michael S.J. Walter and Jakob P.C. Stacheder

This study aims to address challenges in the Laser Powder Bed Fusion process of polymers, focusing on the considerable amount of unsintered powder left post-printing. The…

Abstract

Purpose

This study aims to address challenges in the Laser Powder Bed Fusion process of polymers, focusing on the considerable amount of unsintered powder left post-printing. The objective is to understand the altered properties of this powder and find solutions to improve the process, reduce waste and explore reusing reprocessed powder.

Design/methodology/approach

A novel methodology is used to generate reprocessed powder without traditional printing, reducing time, cost and waste. The approach mimics the ageing effects during the printing process, providing insights into particle size distribution and thermal behaviour.

Findings

Results reveal insights into artificial ageing, showing an 8.2% decrease in particle size (60.256–69.183 µm) and a 9.1% increase in particle size (17.378–19.953 µm) compared to unsintered powder. Thermal behaviour closely mirrors used powders, with variations in enthalpy of fusion (−0.55% to 2.69%) and degree of crystallinity (0.19% to 2.64%). The proposed methodology produces results that differ from those due to printing under 3% from a thermal point of view. The new process reduces the time needed for aged powder, contributing to cost savings and waste reduction.

Originality/value

The study introduces a novel method for reprocessed powder generation, deviating from traditional printing. The originality lies in artificially ageing powders, providing comparable results to actual printing. This approach offers efficiency, time savings and waste reduction in the Laser Powder Bed Fusion process, presenting a valuable avenue for further research.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 April 2023

Suzhu Yu, Aloysius Tan, Wei Ming Tan, Xinying Deng, Cher Lin Tan and Jun Wei

This paper aims to develop flame-retardant (FR) polyamide 12 (PA12) nanocomposite from regenerated powder via selective laser sintering (SLS), an additive manufacturing technique.

Abstract

Purpose

This paper aims to develop flame-retardant (FR) polyamide 12 (PA12) nanocomposite from regenerated powder via selective laser sintering (SLS), an additive manufacturing technique.

Design/methodology/approach

First, the morphology, processibility, thermal and mechanical properties of PA12 regenerated powder, consisting of 50 wt% new and 50 wt% recycled powder, as well as corresponding printed specimens, were evaluated to characterize the effects of previous SLS processing. Second, flame-retardant PA12 was developed by incorporating both single and binary halogen-free flame retardants into the regenerated powder.

Findings

It was found that the printed specimens from regenerated powder had much higher tensile and impact properties compared to specimens made from new powder, which is attributed to better particulate fusion and coalescence realized in higher temperature SLS printing. The effect of FRs on thermal, mechanical and flame retardant properties of the PA12 composites/nanocomposites was investigated systematically. It was found that the nanoclay, as a synergist, improved both flame-retardant and mechanical properties of PA12. UL94 standard rating of V-0 was achieved for the printed nanocomposite by incorporating 1 wt% nanoclay into 15 wt% phosphinates FR. Moreover, on average, the tensile and impact strength of the nanocomposite were increased by 26.13% and 17.09%, respectively, in XY, YZ and Z printing orientations as compared to the equivalent flame retardant composite with 20 wt% of the phosphinates FR.

Originality/value

This paper fulfills the need to develop flame retardant parts via SLS technology with waste feedstock. It also addresses the challenge of developing flame retardant materials without obviously compromising the mechanical properties by making use of the synergistic effect of nanoclay and organic phosphinates.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 April 2015

Miriam Johanna Haerst, Romano Wolf, Markus Schönberger, Erich Wintermantel, Kurt Engelsing, Peter Heidemeyer and Martin Bastian

The purpose of this paper is to describe the ageing behaviour of polyamide 12 (PA12) after clinical use. The research is focused on the comparison of the processing methods…

Abstract

Purpose

The purpose of this paper is to describe the ageing behaviour of polyamide 12 (PA12) after clinical use. The research is focused on the comparison of the processing methods injection moulding and laser sintering.

Design/methodology/approach

Test specimens are subjected to a cyclic stress of defined bending, cleaning, disinfection and sterilization. The focus of interest in this research is the degradation and reduction of mechanical properties.

Findings

Mechanical and optical changes of the materials after clinical use and hygienic reprocessing are evaluated and discussed.

Research limitations/implications

This article is focused on PA12 and, therefore, enables a very specific statement for the clinical use of PA12. The processing methods could have different impacts depending on the polymer.

Originality/value

With the increasing application of polymers in medical devices, the mechanical properties must be ensured even after long-term clinical use. A systematic research with a realistic and still-defined cyclic stress is shown in this paper. Especially the testing of laser sintered polymers compared to injection moulded material has an important message for future patient-specific products.

Details

Rapid Prototyping Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 25