Search results

1 – 10 of over 4000
Article
Publication date: 3 October 2016

Chaozhi Cai, Leyao Fan and Bingsheng Wu

This paper aims to understand the outlet temperature distribution of the combustor of a high-temperature, high-speed heat-airflow simulation system.

Abstract

Purpose

This paper aims to understand the outlet temperature distribution of the combustor of a high-temperature, high-speed heat-airflow simulation system.

Design/methodology/approach

The paper uses numerical simulation to study the temperature distribution of the combustor of a high-temperature, high-speed heat-airflow simulation system. First, the geometrical model of the combustor and the combustion model of the fuel are established. Then, the combustion of fuel in the combustor is simulated by using FLUENT under various conditions. Finally, the results are obtained.

Findings

The paper found three conclusions: when the actual fuel–gas ratio is equal to the theoretical fuel–gas ratio, the temperature in the combustor of the high-temperature, high-speed heat-airflow simulation system (HTSAS) can reach its highest and the distribution is the most uniform. Although increases in the total temperature of the inlet air can increase the highest temperature in the combustor of the HTSAS, the average temperature of the combustor outlet will decrease. At the same time, it will lead to an uneven temperature distribution of the combustor outlet. When the spray angle of the kerosene droplet is at 30 degrees, the outlet temperature field of the combustor is more uniform.

Originality/value

The paper presents a method to analyze the combustion performance of fuel and the gas temperature distribution in the combustor. The results will lay the foundation for the gas temperature control of a combustor.

Details

World Journal of Engineering, vol. 13 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 June 2009

S.L. Beh, K.‐K. Tio, G.A. Quadir and K.N. Seetharamu

The purpose of this paper is to apply asymptotic waveform evaluation (AWE) to the transient analysis of a two‐layered counter‐flow microchannel heat sink.

Abstract

Purpose

The purpose of this paper is to apply asymptotic waveform evaluation (AWE) to the transient analysis of a two‐layered counter‐flow microchannel heat sink.

Design/methodology/approach

A two‐layered counter‐flow microchannel heat sink in both steady state and transient conditions is analysed. Finite element analysis is used in the steady state analysis whereas AWE is used in the transient analysis.

Findings

A two‐layered microchannel produces different temperature distribution compared to that obtained for a single‐layered microchannel. The maximum temperature occurs at the middle of the bottom wall whereas the maximum temperature of a single‐layered microchannel is at the outlet of the bottom wall. The time taken to reach steady state is also investigated for different coolant flow rate and heat flux boundary conditions. It is observed that when fluid velocity increases, the time taken to reach steady state decreases, however, when the heat flux increases, the time taken to reach steady state does not change.

Research limitations/implications

The fluid is incompressible and does not undergo phase change. The use of AWE provides an alternative method in solving heat transfer problem.

Practical implications

New and additional data will be useful in the design of a microchannel heat sink for the purpose of cooling of electronic components.

Originality/value

AWE is widely used in analyses of signal delays in electronic circuits, and rarely applied to mechanical systems. The present study applies AWE to heat transfer problems, and reveals that it reduces the computational time considerably. The results obtained are compared with conventional methods available in the literature, and they show good agreement. Hence the computational time is reduced, and the accuracy of results is verified.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

Soroush Sadripour

In this study, the effects of using corrugated absorber plate (instead of flat plate) and also using aerosol/carbon-black nanofluid (instead of air) on heat transfer and turbulent…

Abstract

Purpose

In this study, the effects of using corrugated absorber plate (instead of flat plate) and also using aerosol/carbon-black nanofluid (instead of air) on heat transfer and turbulent flow characteristics in solar collectors were numerically investigated.

Design/methodology/approach

The 3D continuity, momentum and energy equation were solved by finite volume and SIMPLE algorithm. As a result, the corrugated absorber plate was inspected in the case of triangle, rectangle and sinuous with the wave length of 1 mm and wave amplitude of 3 mm in turbulent flow regime and Reynolds number between 2,500 and 4,000. Choosing the proper geometry was carried out based on the best performance evaluation criteria (PEC) and increasing the air temperature from collector inlet to outlet.

Findings

The results revealed that for all times of the year the highest PEC was obtained for corrugated Sinusoidal model; however, the highest temperature increase from inlet to outlet was obtained for rectangular corrugated model. In addition, the results indicated that in sinusoidal model, the nanoparticles volume fractions increase leads to heat performance coefficient increase and the best heat performance conditions were attained in volume fraction of 0.1 per cent and Reynolds number of 4,000 for both six months period. In model with rectangular corrugated plate, usage of nanofluid in all range of Reynolds numbers leads to reduction of outlet temperature.

Originality/value

The effect of some nanoparticles on heat transfer using thermal– hydraulic performances in heat exchangers has been assessed, but the effects of atmospheric aerosol-based nanofluid using carbon-black nanoparticles (CBNPs) on the heat transfer in corrugated heat sink solar collectors by 3D numerical modeling has not been yet investigated. In present study, usage of CBNPs with different volume fractions in range of 0 to 0.1 per cent in turbulent regime of fluid flow is analyzed. Furthermore, in this paper, besides the effects of using CBNPs, a solar absorber located in Shiraz, as one of the best solar irradiation receiver cities in Iran is evaluated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2015

Veerabhadrappa Kavadiki,   Vinayakaraddy, Meghana H Chaturvedi, Krishna Venkataram and K N Seetharamu

The purpose of this paper is to analyse the dynamic behaviour of a three-fluid heat exchanger subjected to a step change in the temperature and velocity of the fluids at the…

Abstract

Purpose

The purpose of this paper is to analyse the dynamic behaviour of a three-fluid heat exchanger subjected to a step change in the temperature and velocity of the fluids at the inlet.

Design/methodology/approach

The analysis is carried out using the finite element methodology, adopting the Galerkin’s approach, using implicit method for transient behaviour.

Findings

The effect of step changes in the inlet temperature of hot and cold fluids show that an increase in the fluid inlet temperatures leads to increased outlet temperatures of all fluids and decreased hot fluid effectiveness. The exit temperatures of the fluids do not show any response initially for a certain period of time with the step changes. The time to reach steady state is independent of the step change in inlet temperature of the hot and the cold fluids.

Research limitations/implications

The findings of this paper is limited to constant property situations.

Practical implications

The findings will be useful in designing control and regulation systems of heat exchangers used in different industrial processes and operations, such as in nuclear reactors, cryogenic and petrochemical process plants.

Social implications

The analysis provides a time frame in which the controls and regulation systems work, so that the necessary safety precautions for the people working in the surrounding area can be taken care of.

Originality/value

As per the best knowledge of the authors, none of the papers so far have discussed the effect of the change in the inlet temperature and velocity of both the fluids. Performance parameters such as effectiveness, time to reach steady state, etc. have not been studied so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 September 2010

Chun‐Hsiang Yang, Di‐Han Wu and Chiun‐Hsun Chen

Utilizing renewable energy and developing new energy sources are practical responses to the shortage of fossil fuels and environmental regulations for carbon dioxide emissions…

Abstract

Purpose

Utilizing renewable energy and developing new energy sources are practical responses to the shortage of fossil fuels and environmental regulations for carbon dioxide emissions. The purpose of this paper is to assess the practicability of using low heating value (LHV) fuel on an annular miniature gas turbine (MGT) via numerical simulations.

Design/methodology/approach

The MGT used in this study is MW‐44 Mark I, whose original fuel is liquid (Jet A1). Its fuel supply system is re‐designed to use biogas fuel with LHV. The simulations, aided by the commercial code CFD‐ACE+, were carried out to investigate the cooling effect in a perforated combustion chamber and combustion behavior in an annular MGT when using LHV gas. In this study, four parameters of rotational speeds are considered. At each specific speed, various mixture ratios of methane (CH4) to carbon dioxide (CO2) including 90, 80, 70, and 60 percent were taken into consideration as simulated LHV fuels.

Findings

The simulation results show the chamber design can create a proper recirculation zone to concentrate the flame at the center of the chamber, and prevent the flame from expanding to cause hot spot. Furthermore, the hot gas exhausted from combustor outlet is cooled down effectively by jet flow discharged from dilution holes, which prevent turbine blade from heat damage.

Originality/value

Simulation results demonstrate that CFD‐ACE+ can simulate flow field performance and combustion behavior in an annular MGT precisely. The results of these CFD analyses confirm that the methane fuel can be used in such small volume of MGT and still have high performance. With the aid of the constructed combustor model, the performance of a methane‐used MGT can be realized before the experiment procedure starts.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1996

T. Jesionowski and A. Krysztafkiewicz

Presents the outcome of intensive research into highly dispersed sodium‐aluminium silicate. Optimal conditions of the precipitation process of sodium‐aluminium silicates of high…

Abstract

Presents the outcome of intensive research into highly dispersed sodium‐aluminium silicate. Optimal conditions of the precipitation process of sodium‐aluminium silicates of high dispersion degrees from the solution of sodium metasilicate were given. In the precipitation process water soluble aluminium salts were used. A physicochemical analysis and microscopic structure of the obtained silicates were performed. The products obtained are characterized by parameters comparable to those of the sodium‐aluminium silicate P‐820 (Degussa).

Details

Pigment & Resin Technology, vol. 25 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 November 2015

Kailash Mohapatra and Dipti Prasad Mishra

– The purpose of this paper is to determine the heat transfer and fluid flow characteristics of an internally finned tube for different flow conditions.

Abstract

Purpose

The purpose of this paper is to determine the heat transfer and fluid flow characteristics of an internally finned tube for different flow conditions.

Design/methodology/approach

Numerical investigation have been performed by solving the conservation equations of mass, momentum, energy with two equation-based k-eps model to determine the wall temperature, outlet temperature and Nusselt number of an internally finned tube.

Findings

It has been found from the numerically investigation that there exists an optimum fin height and fin number for maximum heat transfer. It was also found that the heat transfer in T-shaped fin was highest compared to other shape. The saw type fins had a higher heat transfer rate compared to the plane rectangular fins having same surface area and the heat transfer rate was increasing with teeth number. Keeping the surface area constant, the shape of the duct was changed from cylindrical to other shape and it was found that the heat transfer was highest for frustum shape compared to other shape.

Practical implications

The present computations could be used to predict the heat transfer and fluid flow characteristics of an internal finned tube specifically used in chemical and power plants.

Originality/value

The original contribution of the paper was in the use of the two equation-based k-eps turbulent model to predict the maximum heat transfer through optimum design of fins and duct.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2019

Michael Maks Davis, Andrea Lorena Vallejo Espinosa and Francisco Rene Ramirez

Vertical gardens offer multiple benefits in urban environments, including passive cooling services. Previous research explored the use of “active vertical gardens” as potential…

Abstract

Purpose

Vertical gardens offer multiple benefits in urban environments, including passive cooling services. Previous research explored the use of “active vertical gardens” as potential evaporative air-cooling units by developing a mathematical model based on the FAO-56 Penman Monteith equation. Further research showed that active vertical gardens function best by creating an airflow in the cavity behind the garden such that air is cooled by flowing over the water-saturated garden substrate. The purpose of this paper is to improve the quantification of active vertical garden performance.

Design/methodology/approach

A building-incorporated vertical garden was built in Quito, Ecuador, with an air inlet at the top of the garden, an air cavity behind the garden and where air was expelled from the base. Measurements were made of air temperature, humidity and velocity at the air inlet and outlet.

Findings

The active vertical garden cooled the air by an average of 8.1 °C with an average cooling capacity of 682.8 W. Including the effects of pre-cooling at the garden inlet, the garden cooled the air by an average of 14.3 °C with an average cooling capacity of 1,203.2 W.

Originality/value

The results are promising and support the potential for active vertical gardens to be incorporated into building services and climate control.

Details

Smart and Sustainable Built Environment, vol. 8 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 15 August 2019

Davood Toghraie, Maboud Hekmatifar and Niyusha Adavoodi Jolfaei

This paper aims to investigate the three-dimensional (3D) numerical simulations, based on the Navier–Stokes equations and the energy equation. Forced convection of a mixture of…

Abstract

Purpose

This paper aims to investigate the three-dimensional (3D) numerical simulations, based on the Navier–Stokes equations and the energy equation. Forced convection of a mixture of (60:40) percent ethylene glycol and water, was used as the base fluid and CuO nanoparticles, through a serpentine minichannel.

Design/methodology/approach

In this simulation, a serpentine mini-channel heat exchanger was simulated. The fluid studied in this simulation was composed of a mixture of (60:40) per cent ethylene glycol and water, was used as the base fluid and CuO nanoparticles. Four slabs and three serpentines were used in this study. The serpentine section is connected to the slab. Three equidistant circular channels (1 mm in diameter) were implemented inside the slab.

Findings

Results show that nanoparticles increase the fluid pressure drop and by changing volume fraction of nanoparticles from 0 to 1 per cent, the pressure drop of nanofluids increases between 42and 47 per cent, for Reynolds numbers from 100 to 500. The existence of serpentine bend in the minichannel heat exchanger causes the heat transfer rate to increase. Increase the volume fraction of nanoparticles reduces the fluid temperature at the outlet of the heat exchanger. The numerical results show that in Re = 500, at the beginning of the last slab in middle channel by changing volume fraction of nanoparticles from 0 to 2 per cent, local Nusselt number 57.40 per cent increase. The existence of the serpentine bend causes the heat transfer rate to increase.

Originality/value

Forced convection of a mixture of (60:40) per cent ethylene glycol and water by using of 3D numerical simulations, based on the Navier–Stokes equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 June 2021

Masoud Behzad, Benjamin Herrmann, Williams R. Calderón-Muñoz, José M. Cardemil and Rodrigo Barraza

Volumetric air receivers experience high thermal stress as a consequence of the intense radiation flux they are exposed to when used for heat and/or power generation. This study…

Abstract

Purpose

Volumetric air receivers experience high thermal stress as a consequence of the intense radiation flux they are exposed to when used for heat and/or power generation. This study aims to propose a proper design that is required for the absorber and its holder to ensure efficient heat transfer between the fluid and solid phases and to avoid system failure due to thermal stress.

Design/methodology/approach

The design and modeling processes are applied to both the absorber and its holder. A multi-channel explicit geometry design and a discrete model is applied to the absorber to investigate the conjugate heat transfer and thermo-mechanical stress levels present in the steady-state condition. The discrete model is used to calibrate the initial state of the continuum model that is then used to investigate the transient operating states representing cloud-passing events.

Findings

The steady-state results constitute promising findings for operating the system at the desired airflow temperature of 700°C. In addition, we identified regions with high temperatures and high-stress values. Furthermore, the transient state model is capable of capturing the heat transfer and fluid dynamics phenomena, allowing the boundaries to be checked under normal operating conditions.

Originality/value

Thermal stress analysis of the absorber and the steady/transient-state thermal analysis of the absorber/holder were conducted. Steady-state heat transfer in the explicit model was used to calibrate the initial steady-state of the continuum model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 4000