Search results

1 – 10 of over 39000
To view the access options for this content please click here
Article

Mayday

A means to alert the flightcrew of an aircraft's potentially unsafe low fuel quantity was the subject of a Notice of Proposed Rulemaking (NPRM) issued earlier this year…

Abstract

A means to alert the flightcrew of an aircraft's potentially unsafe low fuel quantity was the subject of a Notice of Proposed Rulemaking (NPRM) issued earlier this year. It was emphasised that there have been several recent fuel depletion incidents involving loss of power or thrust on all engines that could have resulted in forced landings and injury or loss of life. Most of these incidents resulted from improper fuel management techniques and this proposal from the FAA would require new transport category aircraft designs to incorporate a low fuel quantity alert to the flightcrew that would allow either correction of certain fuel management errors or the opportunity to make a safe landing prior to engine fuel starvation.

Details

Aircraft Engineering and Aerospace Technology, vol. 59 no. 11
Type: Research Article
ISSN: 0002-2667

To view the access options for this content please click here
Article

Ibrahim Yildiz and Hakan Caliskan

The purpose of this study is to evaluate the energy and exergy prices and carbon emission equivalents of the jet kerosene (Jet A-1) fuel considering 12 months data for the…

Abstract

Purpose

The purpose of this study is to evaluate the energy and exergy prices and carbon emission equivalents of the jet kerosene (Jet A-1) fuel considering 12 months data for the air transport sector in Turkey.

Design/methodology/approach

In the selection of the energy resources, one of the most important factors besides the need is the price of the energy resources. To use and save the energy resources efficiently, the prices should be evaluated in terms of exergy too. In this context, the exergy prices and carbon emission equivalents of the jet kerosene fuel have been examined.

Findings

According to analysis results, after January 2020, a steady decline in energy prices has been obtained until April 2020. In this regard, directly proportional changes have been obtained in exergy prices. The minimum exergy price of the fuel is calculated as 74.36 US cents/kWh for April 2020, while the maximum exergy price of the fuel is calculated as 150.02 US cents/kWh for September 2019. The minimum exergy price based carbon emission equivalents for the jet kerosene fuel is determined as 1,099.98 US cents/kg for April 2020, while the maximum exergy price based carbon emission equivalents for the jet kerosene fuel is found to be 2,219.29 US cents/kg for September 2019.

Originality/value

The new contribution has been made to the open literature by examining the energy and exergy prices of the jet kerosene fuel. In addition, the carbon emission equivalents of the jet kerosene fuel have been determined not only energy but also exergy methods.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article

Booma Devi, Venkatesh S., Rakesh Vimal and Praveenkumar T.R.

This paper aims to investigate the effect of additives in Jet-A fuel blends, especially on performance, combustion and emission characteristics.

Abstract

Purpose

This paper aims to investigate the effect of additives in Jet-A fuel blends, especially on performance, combustion and emission characteristics.

Design/methodology/approach

Jet-A fuel was formed by using Kay’s and Gruenberg–Nissan mixing rules by adding additive glycerol with TiO2. While measuring the combustion performance, the amount of oxygen content present in fuel and atomization are the key factors to consider. As such, the Jet-A fuel was created by adding additives at different proportion. A small gas turbine engine was used for conducting tests. All tests were carried out at different load conditions for all the fuel blends such as neat Jet-A fuel, G10T (glycerol 10% with 50 ppm TiO2 and Jet-A 90%), G20T (glycerol 10% with 50 ppm TiO2 and Jet-A 90%) and G30T (glycerol 10% with 50 ppm TiO2 and Jet-A 90%).

Findings

From tests, the G20T and G10T produced better results than other blends. The thermal efficiency of the blends of G20T and G10T are 22% and 14% higher than neat Jet-A fuel. Further, the improved static thrust with less fuel consumption was noticed in G20T fuel blend.

Originality/value

The G20T blends showed better performance because of the increased oxygenated compounds in the fuel blends. Moreover, the emission rate of environmentally harmful gases such as NOx, CO and HC was lower than the neat Jet-A fuel. From the results, it is clear that the rate of exergy destruction is more in the combustion chamber than the other components of fuel.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article

Aditya Kolakoti

This study aims to improve the performance and to regulate the harmful emission from the diesel engine. For this purpose, palm oil biodiesel (POBD), waste cooking…

Abstract

Purpose

This study aims to improve the performance and to regulate the harmful emission from the diesel engine. For this purpose, palm oil biodiesel (POBD), waste cooking biodiesel (WCBD) and animal fat biodiesel (AFBD) are used for examination.

Design/methodology/approach

The transesterification process was followed to convert the three raw oils into biodiesels and the experiments are conducted at various loads with fixed 25 rps. Diesel as a reference fuel and three neat biodiesels are tested for emissions and performance. By training the experimental results in an artificial neural network (ANN), the best biodiesel was predicted.

Findings

The biodiesels are tested for significant fuel properties with the American Society for testing and materials standards and observed that kinematic viscosity, density and cetane number are recorded higher than diesel fuel. The fatty acid composition (FAC) from chromatography reveals the presence of unsaturated FAC is more in POBD (70.89%) followed by WCBD (57.67%) and AFBD (43.13%). The combustion pressures measured at every degree of crank angle reveal that WCBD and AFBD exhibited on far with diesel fuel. Compared to diesel fuel WCBD and AFBD achieved maximum brake thermal efficiency of 31.99% and 30.93% at 75% load. However, there is a penalty in fuel consumption and NOx emissions from biodiesels. On the other hand, low carbon monoxide, unburnt hydrocarbon emissions and exhaust smoke are reported for biodiesels. Finally, WCBD was chosen as the best choice based on ANN modeling prediction results.

Originality/value

There is no evident literature on these three neat biodiesel applications with the mapping of ANN modeling.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article

P. Gunasekar, S. Manigandan, Venkatesh S., R. Gokulnath, Rakesh Vimal and P. Boomadevi

The depletion of fossil fuel and emissions of harmful gases forced the pioneers in search of alternate energy source. The purpose of this study is to present an effective…

Abstract

Purpose

The depletion of fossil fuel and emissions of harmful gases forced the pioneers in search of alternate energy source. The purpose of this study is to present an effective use of hydrogen fuel for turbojet engines based on its exergetic performance.

Design/methodology/approach

This study was performed to measure the assessment of exergetic data of turbojet engines. Initially, the test was carried out on the Jet A-1 fuel. Then, a series of similar tests were carried out on turbojet engines with hydrogen fuel to measure their performance results. Finally, the exergetic values of both were compared with each other.

Findings

The introduction of hydrogen fuel reduced the exergy efficiency, and a 10 per cent reduction was observed in exergy efficiency. Simultaneously, the waste exergy rate increased by 9 per cent. However, because of the high specific fuel exergy, hydrogen fuel was better than Jet A-1 fuel. Note that parameters such as environmental effect factor and ecological effect witnessed an increase in their index owing to the addition of hydrogen.

Practical implications

Introduction of alternative blends is necessary for achieving lower emission of gases such as CO, NOx and CO2 from gas turbine engines without compromising on performance. The Jet A fuels were replaced by blends to obtain better emission characteristics.

Originality/value

The use of hydrogen in turbojet engines showed an adverse effect on exergetic performance. However, it was very impressive to see a 200 per cent reduction in emissions. From the comparison of exergy efficiency results of inlet, combustion and nozzle, it is evident that the combustion chamber has the largest values of exergy ratio, waste exergy ratio, cost flow, ecological factor, environmental factor and fuel ratio owing to irreversibility in the combustion process.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

To view the access options for this content please click here
Article

Ganesh Rupchand Gawale and Naga Srinivasulu G.

Homogeneous charge compression ignition (HCCI) engine is an advanced combustion method to use alternate fuel with higher fuel economy and, reduce NOX and soot emissions…

Abstract

Purpose

Homogeneous charge compression ignition (HCCI) engine is an advanced combustion method to use alternate fuel with higher fuel economy and, reduce NOX and soot emissions. This paper aims to investigate the influence of ethanol fraction (ethanol plus gasoline) on dual fuel HCCI engine performance.

Design/methodology/approach

In this study, the existing CI engine is modified into dual fuel HCCI engine by attaching the carburetor to the inlet manifold for the supply of ethanol blend (E40/E60/E80/E100). The mixture of ethanol blend and the air is ignited by diesel through a fuel injector into the combustion chamber at the end of the compression stroke. The experiments are conducted for high load conditions on the engine i.e. 2.8 kW and 3.5 kW maximum output power for 1,500 constant rpm.

Findings

It is noticed from the experimental results that, with an increase of ethanol in the blends, ignition delay (ID) increases and the start of combustion is retarded. It is noticed that E100 shows the highest ID and low in-cylinder pressure; however, E40 shows the lowest ID compared to higher fractions of ethanol blends. An increase in ethanol proportion reduces NOX and smoke opacity but, HC and CO emissions increase compared to pure diesel mode engine. E100 plus diesel dual-fuel HCCI engine shows the highest brake thermal efficiency compared to remaining ethanol blends and baseline diesel engine.

Originality/value

This experimental study concluded that E100 plus diesel and E80 plus diesel gave optimum dual fuel HCCI engine performance for 2.8 kW and 3.5 kW rated power, respectively.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article

J.D. Smith

The effects of a number of metals and alloys on the thermal stability of Avtur 50 have been evaluated from ASTM‐CRC and high temperature coker tests. The materials tested…

Abstract

The effects of a number of metals and alloys on the thermal stability of Avtur 50 have been evaluated from ASTM‐CRC and high temperature coker tests. The materials tested are used in current aircraft fuel systems or are possible alternatives for fuel systems of supersonic aircraft where they will be in contact with hot fuel. The alloys currently used in aircraft fuel systems have been classified and their probable effects on the stability of hot fuel listed. A number of the materials affected stability adversely, particularly alloys containing significant amounts of copper, and the use of these should be avoided. The pick‐up of copper by Avtur 50 at ambient temperature from alloys such as brass and gun‐metal has also been investigated. The results indicated that sufficient copper to affect thermal stability adversely is readily picked up from these alloys.

Details

Aircraft Engineering and Aerospace Technology, vol. 39 no. 4
Type: Research Article
ISSN: 0002-2667

To view the access options for this content please click here
Article

Changduk Kong, Myoung‐cheol Kang, Chang‐ho Lee and Dong‐ju Han

To set‐up a specific design procedure for the smart unmanned aerial vehicle (UAV) fuel supply system which has been developed by Korean Aerospace Research Institute, and…

Abstract

Purpose

To set‐up a specific design procedure for the smart unmanned aerial vehicle (UAV) fuel supply system which has been developed by Korean Aerospace Research Institute, and to design it preliminarily with the fuel system requirement and target reliabilities.

Design/methodology/approach

The fuel system layout and fuel tank were determined through consideration of total fuel volume, fuel flow rate, reliability, weight, centre of gravity, etc. In sizing of components such as booster pumps, jet pumps, piping system, vent subsystem, refuelling and defuelling subsystem, engine fuel flow requirement, pressure loss, component failure rate, weight and centre of gravity were considered. Finally, the reliability analysis of the preliminary designed fuel system was carried out.

Findings

According to the reliability analysis and weight estimation results, it was confirmed that the proposed fuel system agreed well with the design specifications and target reliabilities required by the vehicle system.

Research limitations/implications

In current preliminary design phase, the most important consideration is the reliability of the fuel system. Therefore, the weight estimation of the designed fuel system to meet this reliability requirement could not meet partially the system's requirements. In the next design step, the proper fuel system for weight reduction will be performed through an optimization process between weight and reliability.

Originality/value

A specific design procedure components' sizing to meet system requirement target reliability for UAV vertical take‐off/landing was proposed.

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

To view the access options for this content please click here
Article

De-Xing Peng

This paper aims to evaluate the effect of biodiesel additive in fuel system of diesel engines to reduce wear characteristics. Biofuels are environmentally friendly and…

Abstract

Purpose

This paper aims to evaluate the effect of biodiesel additive in fuel system of diesel engines to reduce wear characteristics. Biofuels are environmentally friendly and renewable alternatives to mineral-based fuels and cause low pollution; thus, they can be used to comply with future emission regulations to safeguard environmental and human health.

Design/methodology/approach

Two types of diesel fuel, pure petrodiesel and soybean oil, were compared for their fuel properties and tribological performance. The ball-on-disk wear testing method was used as an analytical tool for this purpose. The lubricating efficiency of the fuels was estimated using a photomicroscope to measure the average diameter of the wear scar produced on the test ball.

Findings

The wear experiments showed that the wear scar diameters were 1.13 and 0.94 mm for lubrication of the pure petro-diesel and soybean oil, respectively. However, fatty acids containing biodiesel typically have thicker molecular layers than mineral pure petro-diesel, and thus can reduce the wear rate of the sliding metals. This improved the boundary lubrication conditions and the lubricity of the fuel. Biodiesel fuels are effective lubricity enhancers and have greater lubricity enhancing properties than petro-diesel.

Originality/value

The ability of biodiesel to be highly biodegradable and its superior lubricating property when used in compression ignition engines make it an excellent fuel. Biofuel is an attractive alternative fuel to various energy sectors, particularly the transportation sector. Biofuel has immense potential for use in a sustainable energy mixture in the future.

Details

Industrial Lubrication and Tribology, vol. 68 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article

John Butson

The declared aim of this paper is to explore the possible effects of the need for energy conservation (and in particular the need for economy in the use of oil‐based fuels

Abstract

The declared aim of this paper is to explore the possible effects of the need for energy conservation (and in particular the need for economy in the use of oil‐based fuels) on road vehicle development in the UK over the next few decades. In the absence of the author, his colleague, R J Francis, also of Harwell, presented this paper at the conference held by the Institute of Management Services in London, September 1980. He stressed the fact that the views here are those of ETSU, and may not necessarily be regarded in any way as “government policy”. ETSU is the Energy Technology Support Unit, which is based at Harwell, and was established in 1974 to formulate and manage research, development and demonstration programmes in the technology of renewable energy sources and conservation under contract to the Department of Energy. There are approximately 45 professional staff at ETSU (mainly scientists and engineers) working in three main areas: strategic planning of research and development, management of R&D on the renewable energy sources, and research, development and demonstration in energy conservation. When introducing this paper, Richard Francis said that it set out to establish the need for conservation in general, as well as to explain how this is to be achieved in practice. This subject, he commented, leads on to the special task of improving fuel economy and achieving wider fuel flexibility within road transport, which itself has wide implications for road vehicle technology. This paper reviews all the more realistic alternatives, and then attempts to identify those which seem most promising and also to quantify the impact they might have in reducing our dependence on oil‐based fuels.

Details

Retail and Distribution Management, vol. 8 no. 6
Type: Research Article
ISSN: 0307-2363

1 – 10 of over 39000