Search results

1 – 10 of 180
Book part
Publication date: 23 April 2024

Emerson Norabuena-Figueroa, Roger Rurush-Asencio, K. P. Jaheer Mukthar, Jose Sifuentes-Stratti and Elia Ramírez-Asís

The development of information technologies has led to a considerable transformation in human resource management from conventional or commonly known as personnel management to…

Abstract

The development of information technologies has led to a considerable transformation in human resource management from conventional or commonly known as personnel management to modern one. Data mining technology, which has been widely used in several applications, including those that function on the web, includes clustering algorithms as a key component. Web intelligence is a recent academic field that calls for sophisticated analytics and machine learning techniques to facilitate information discovery, particularly on the web. Human resource data gathered from the web are typically enormous, highly complex, dynamic, and unstructured. Traditional clustering methods need to be upgraded because they are ineffective. Standard clustering algorithms are enhanced and expanded with optimization capabilities to address this difficulty by swarm intelligence, a subset of nature-inspired computing. We collect the initial raw human resource data and preprocess the data wherein data cleaning, data normalization, and data integration takes place. The proposed K-C-means-data driven cuckoo bat optimization algorithm (KCM-DCBOA) is used for clustering of the human resource data. The feature extraction is done using principal component analysis (PCA) and the classification of human resource data is done using support vector machine (SVM). Other approaches from the literature were contrasted with the suggested approach. According to the experimental findings, the suggested technique has extremely promising features in terms of the quality of clustering and execution time.

Details

Technological Innovations for Business, Education and Sustainability
Type: Book
ISBN: 978-1-83753-106-6

Keywords

Article
Publication date: 26 July 2022

Hiwa Esmaeilzadeh, Alireza Rashidi Komijan, Hamed Kazemipoor, Mohammad Fallah and Reza Tavakkoli-Moghaddam

The proposed model aims to consider the flying hours as a criterion to initiate maintenance operation. Based on this condition, aircraft must be checked before flying hours…

Abstract

Purpose

The proposed model aims to consider the flying hours as a criterion to initiate maintenance operation. Based on this condition, aircraft must be checked before flying hours threshold is met. After receiving maintenance service, the model ignores previous flying hours and the aircraft can keep on flying until the threshold value is reached again. Moreover, the model considers aircraft age and efficiency to assign them to flights.

Design/methodology/approach

The aircraft maintenance routing problem (AMRP), as one of the most important problems in the aviation industry, determines the optimal route for each aircraft along with meeting maintenance requirements. This paper presents a bi-objective mixed-integer programming model for AMRP in which several criteria such as aircraft efficiency and ferrying flights are considered.

Findings

As the solution approaches, epsilon-constraint method and a non-dominated sorting genetic algorithm (NSGA-II), including a new initializing algorithm, are used. To verify the efficiency of NSGA-II, 31 test problems in different scales are solved using NSGA-II and GAMS. The results show that the optimality gap in NSGA-II is less than 0.06%. Finally, the model was solved based on real data of American Eagle Airlines extracted from Kaggle datasets.

Originality/value

The authors confirm that it is an original paper, has not been published elsewhere and is not currently under consideration of any other journal.

Article
Publication date: 2 April 2024

Takahiro Sato and Kota Watanabe

There are few reports that evolutional topology optimization methods are applied to the conductor geometry design problems. This paper aims to propose an evolutional topology…

Abstract

Purpose

There are few reports that evolutional topology optimization methods are applied to the conductor geometry design problems. This paper aims to propose an evolutional topology optimization method is applied to the conductor design problems of an on-chip inductor model.

Design/methodology/approach

This paper presents a topology optimization method for conductor shape designs. This method is based on the normalized Gaussian network-based evolutional on/off topology optimization method and the covariance matrix adaptation evolution strategy. As a target device, an on-chip planer inductor is used, and single- and multi-objective optimization problems are defined. These optimization problems are solved by the proposed method.

Findings

Through the single- and multi-objective optimizations of the on-chip inductor, it is shown that the conductor shapes of the inductor can be optimized based on the proposed methods.

Originality/value

The proposed topology optimization method is applicable to the conductor design problems in that the connectivity of the shapes is strongly required.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 May 2022

Da’ad Ahmad Albalawneh and M.A. Mohamed

Using a real-time road network combined with historical traffic data for Al-Salt city, the paper aims to propose a new federated genetic algorithm (GA)-based optimization…

Abstract

Purpose

Using a real-time road network combined with historical traffic data for Al-Salt city, the paper aims to propose a new federated genetic algorithm (GA)-based optimization technique to solve the dynamic vehicle routing problem. Using a GA solver, the estimated routing time for 300 chromosomes (routes) was the shortest and most efficient over 30 generations.

Design/methodology/approach

In transportation systems, the objective of route planning techniques has been revised from focusing on road directors to road users. As a result, the new transportation systems use advanced technologies to support drivers and provide them with the road information they need and the services they require to reduce traffic congestion and improve routing problems. In recent decades, numerous studies have been conducted on how to find an efficient and suitable route for vehicles, known as the vehicle routing problem (VRP). To identify the best route, VRP uses real-time information-acquired geographical information systems (GIS) tools.

Findings

This study aims to develop a route planning tool using ArcGIS network analyst to enhance both cost and service quality measures, taking into account several factors to determine the best route based on the users’ preferences.

Originality/value

Furthermore, developing a route planning tool using ArcGIS network analyst to enhance both cost and service quality measures, taking into account several factors to determine the best route based on the users’ preferences. An adaptive genetic algorithm (GA) is used to determine the optimal time route, taking into account factors that affect vehicle arrival times and cause delays. In addition, ArcGIS' Network Analyst tool is used to determine the best route based on the user's preferences using a real-time map.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 1 June 2023

Satish Kumar, Arun Gupta, Anish Kumar, Pankaj Chandna and Gian Bhushan

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially…

Abstract

Purpose

Milling is a flexible creation process for the manufacturing of dies and aeronautical parts. While machining thin-walled parts, heat generation during machining essentially affects the accuracy. The workpiece temperature (WT), as well as the responses like material removal rate (MRR) and surface roughness (SR) for input parameters like cutting speed (CS), feed rate (F), depth-of-cut (DOC), step over (SO) and tool diameter (TD), becomes critical for sustaining the accuracy of the thin walls.

Design/methodology/approach

Response surface methodology was used to make 46 tests. To convert the multi-character problem into a single-character problem, the weightage was assessed using the entropy approach and the grey relational coefficient (GRC) was determined. To investigate the connection among input parameters and single-objective (GRC), a fuzzy mathematical modelling technique was used. The optimal performance of process parameters was estimated by grey relational entropy grade (GREG)-fuzzy and genetic algorithm (GA) optimization.

Findings

SR was found to be a significant process parameter, with CS, feed and DOC, respectively. Similarly, F, DOC and TD were found to be significant process parameters with MRR, respectively, and F, DOC, SO and TD were found to be significant process parameters with WT, respectively. GREG-fuzzy-GA found more suitable for minimizing the WT with the constraint s of SR and MRR and provide maximum desirability of 0.665. The projected and experimental values have a good agreement, with a standard error of 5.85%, and so the responses predicted by the suggested method are better optimized.

Originality/value

The GREG-fuzzy-GA is a new hybrid technique for analysing Inconel625 behaviour during machining in a 2.5D milling process.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 April 2024

Niharika Varshney, Srikant Gupta and Aquil Ahmed

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing…

Abstract

Purpose

This study aims to address the inherent uncertainties within closed-loop supply chain (CLSC) networks through the application of a multi-objective approach, specifically focusing on the optimization of integrated production and transportation processes. The primary purpose is to enhance decision-making in supply chain management by formulating a robust multi-objective model.

Design/methodology/approach

In dealing with uncertainty, this study uses Pythagorean fuzzy numbers (PFNs) to effectively represent and quantify uncertainties associated with various parameters within the CLSC network. The proposed model is solved using Pythagorean hesitant fuzzy programming, presenting a comprehensive and innovative methodology designed explicitly for handling uncertainties inherent in CLSC contexts.

Findings

The research findings highlight the effectiveness and reliability of the proposed framework for addressing uncertainties within CLSC networks. Through a comparative analysis with other established approaches, the model demonstrates its robustness, showcasing its potential to make informed and resilient decisions in supply chain management.

Research limitations/implications

This study successfully addressed uncertainty in CLSC networks, providing logistics managers with a robust decision-making framework. Emphasizing the importance of PFNs and Pythagorean hesitant fuzzy programming, the research offered practical insights for optimizing transportation routes and resource allocation. Future research could explore dynamic factors in CLSCs, integrate real-time data and leverage emerging technologies for more agile and sustainable supply chain management.

Originality/value

This research contributes significantly to the field by introducing a novel and comprehensive methodology for managing uncertainty in CLSC networks. The adoption of PFNs and Pythagorean hesitant fuzzy programming offers an original and valuable approach to addressing uncertainties, providing practitioners and decision-makers with insights to make informed and resilient decisions in supply chain management.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 9 February 2022

Sena Başak, İzzet Kılınç and Aslıhan Ünal

The purpose of this paper is to examine the contribution of big data in the transforming process of an IT firm to a learning organization.

Abstract

Purpose

The purpose of this paper is to examine the contribution of big data in the transforming process of an IT firm to a learning organization.

Design/methodology/approach

The authors adopted a qualitative research approach to define and interpret the ideas and experiences of the IT firms’ employees and to present them to the readers directly. For this purpose, they followed a single-case study design. They researched on a small and medium enterprise operating in the IT sector in Düzce province, Turkey. This paper used a semi-structured interview and document analysis as data collecting methods. In all, eight interviews were conducted with employees. Brochures and website of the organization were used as data sources for the document analysis.

Findings

As a result of in-depth interviews and document analysis, the authors formed five main themes that describe perception of big data and learning organization concepts, methods and practices adopted in transforming process, usage areas of big data in organization and how the sample organization uses big data as a learning organization. The findings of this paper show that the sample organization is a learning IT firm that has used big data in transforming to learning organization and in maintaining the learning culture.

Research limitations/implications

The findings contribute to literature as it is one of the first studies that examine the influence of big data on the transformation process of an IT firm to a learning organization. The findings reveal that IT firms benefit from the solutions of big data while learning. However, as the design of the research is single-case study, the findings may be specific to the sample organization. Future studies are required that examine the subject in different samples and by different research designs.

Originality/value

In literature, research on how IT firms’ managers and employees use big data in organizational learning process is limited. The authors expect that this paper will shed light on future research that examines the effect of big data on the learning process of the organization.

Details

VINE Journal of Information and Knowledge Management Systems, vol. 54 no. 3
Type: Research Article
ISSN: 2059-5891

Keywords

Article
Publication date: 30 April 2024

Revanth Kumar Guttena, Ferry Tema Atmaja and Cedric Hsi-Jui Wu

Pandemics are frequent events, and the impact of each pandemic makes a strong and long-term effect on companies and markets. Given the potential impact of the COVID-19 pandemic…

Abstract

Purpose

Pandemics are frequent events, and the impact of each pandemic makes a strong and long-term effect on companies and markets. Given the potential impact of the COVID-19 pandemic, it is important to investigate the crisis from a different perspective to know how companies have sustained growth in markets. The purpose of this paper is to understand how profit-oriented customer-centric companies (small, medium and large) have responded and adapted to COVID-19 crisis, using the complexity theory.

Design/methodology/approach

Drawing upon the complexity theory, a humble attempt is made to develop theoretical propositions by conceptualizing companies as complex adaptive systems. The paper examines companies from three dimensions (i.e. internal mechanism, environment and coevolution).

Findings

Companies self-organize, emerge into new states and become adaptive to the changing environment. Companies create knowledge to understand the dynamic anatomy and design survival and growth strategies during and post COVID-19 era. Complex adaptive systems perspective provides companies with insights to deal with complex issues raised due to COVID-19 pandemic. They can handle the impact of pandemic efficiently with complex adaptive systems by developing and implementing appropriate strategies post-COVID-19.

Originality/value

The study reveals how companies evolve and emerge into as complex adaptive systems to adapt themselves to the highly dynamic environment, which are uncertain, unpredictable, nonlinear and multifaceted, in the context of COVID-19. Implications for theory and practice of viewing companies as complex adaptive systems and coevolving structures in the COVID-19 context are discussed.

Details

Journal of Asia Business Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1558-7894

Keywords

Article
Publication date: 2 April 2024

R.S. Vignesh and M. Monica Subashini

An abundance of techniques has been presented so forth for waste classification but, they deliver inefficient results with low accuracy. Their achievement on various repositories…

Abstract

Purpose

An abundance of techniques has been presented so forth for waste classification but, they deliver inefficient results with low accuracy. Their achievement on various repositories is different and also, there is insufficiency of high-scale databases for training. The purpose of the study is to provide high security.

Design/methodology/approach

In this research, optimization-assisted federated learning (FL) is introduced for thermoplastic waste segregation and classification. The deep learning (DL) network trained by Archimedes Henry gas solubility optimization (AHGSO) is used for the classification of plastic and resin types. The deep quantum neural networks (DQNN) is used for first-level classification and the deep max-out network (DMN) is employed for second-level classification. This developed AHGSO is obtained by blending the features of Archimedes optimization algorithm (AOA) and Henry gas solubility optimization (HGSO). The entities included in this approach are nodes and servers. Local training is carried out depending on local data and updations to the server are performed. Then, the model is aggregated at the server. Thereafter, each node downloads the global model and the update training is executed depending on the downloaded global and the local model till it achieves the satisfied condition. Finally, local update and aggregation at the server is altered based on the average method. The Data tag suite (DATS_2022) dataset is used for multilevel thermoplastic waste segregation and classification.

Findings

By using the DQNN in first-level classification the designed optimization-assisted FL has gained an accuracy of 0.930, mean average precision (MAP) of 0.933, false positive rate (FPR) of 0.213, loss function of 0.211, mean square error (MSE) of 0.328 and root mean square error (RMSE) of 0.572. In the second level classification, by using DMN the accuracy, MAP, FPR, loss function, MSE and RMSE are 0.932, 0.935, 0.093, 0.068, 0.303 and 0.551.

Originality/value

The multilevel thermoplastic waste segregation and classification using the proposed model is accurate and improves the effectiveness of the classification.

Content available
Article
Publication date: 17 July 2023

Ali Nikseresht, Davood Golmohammadi and Mostafa Zandieh

This study reviews scholarly work in sustainable green logistics and remanufacturing (SGLR) and their subdisciplines, in combination with bibliometric, thematic and content…

1351

Abstract

Purpose

This study reviews scholarly work in sustainable green logistics and remanufacturing (SGLR) and their subdisciplines, in combination with bibliometric, thematic and content analyses that provide a viewpoint on categorization and a future research agenda. This paper provides insight into current research trends in the subjects of interest by examining the most essential and most referenced articles promoting sustainability and climate-neutral logistics.

Design/methodology/approach

For the literature review, the authors extracted and sifted 2180 research and review papers for the period 2008–2023 from the Scopus database. The authors performed bibliometric and content analyses using multiple software programs such as Gephi, VOSviewer and R programming.

Findings

The SGLR papers can be grouped into seven clusters: (1) The circular economy facets; (2) Decarbonization of operations to nurture a climate-neutral business; (3) Green sustainable supply chain management; (4) Drivers and barriers of reverse logistics and the circular economy; (5) Business models for sustainable logistics and the circular economy; (6) Transportation problems in sustainable green logistics and (7) Digitalization of logistics and supply chain management.

Practical implications

In this review, fundamental ideas are established, research gaps are identified and multiple future research subjects are proposed. These propositions are categorized into three main research streams, i.e. (1) Digitalization of SGLR, (2) Enhancing scopes, sectors and industries in the context of SGLR and (3) Developing more efficient and effective climate-neutral and climate change-related solutions and promoting more environmental-related and sustainability research concerning SGLR. In addition, two conceptual models concerning SGLR and climate-neutral strategies are developed and presented for managers and practitioners to consider when adopting green and sustainability principles in supply chains. This review also highlights the need for academics to go beyond frameworks and build new techniques and instruments for monitoring SGLR performance in the real world.

Originality/value

This study provides an overview of the evolution of SGLR; it also clarifies concepts, environmental concerns and climate change practices, particularly those directed to supply chain management.

1 – 10 of 180