Search results

1 – 10 of 63
Article
Publication date: 17 September 2024

Mahdi Salari, Milad Ghanbari, Martin Skitmore and Majid Alipour

This paper aims to create a comprehensive framework for selecting alternative materials in construction projects, integrating building information modeling (BIM) and the particle…

Abstract

Purpose

This paper aims to create a comprehensive framework for selecting alternative materials in construction projects, integrating building information modeling (BIM) and the particle swarm optimization (PSO) algorithm. Materials comprise 60%–65% of the total project cost, and current methods require significant time and human resources.

Design/methodology/approach

A prototype framework is developed that considers multiple criteria to optimize the material selection process, addressing the significant investment of time and resources required in current methods. The study uses surveys and interviews with construction professionals to collect primary data on alternative materials selection.

Findings

The results show that integrating BIM and the PSO algorithm improves cost optimization and material selection outcomes.

Originality/value

This comprehensive tool enhances decision-making capabilities and resource utilization, improving project outcomes and resource utilization. It offers a systematic approach to evaluating and selecting materials, making it a valuable resource for construction professionals.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 16 August 2024

Yahao Wang, Yanghong Li, Zhen Li, HaiYang He, Sheng Chen and Erbao Dong

Aiming at the problem of insufficient adaptability of robot motion planners under the diversity of end-effector constraints, this paper proposes Transformation Cross-sampling…

42

Abstract

Purpose

Aiming at the problem of insufficient adaptability of robot motion planners under the diversity of end-effector constraints, this paper proposes Transformation Cross-sampling Framework (TC-Framework) that enables the planner to adapt to different end-effector constraints.

Design/methodology/approach

This work presents a standard constraint methodology for representing end-effector constraints as a collection of constraint primitives. The constraint primitives are merged sequentially into the planner, and a unified constraint input interface and constraint module are added to the standard sampling-based planner framework. This approach enables the realization of a generic planner framework that avoids the need to build separate planners for different end-effector constraints.

Findings

Simulation tests have demonstrated that the planner based on TC-framework can adapt to various end-effector constraints. Physical experiments have also confirmed that the framework can be used in real robotic systems to perform autonomous operational tasks. The framework’s strong compatibility with constraints allows for generalization to other tasks without modifying the scheduler, significantly reducing the difficulty of robot deployment in task-diverse scenarios.

Originality/value

This paper proposes a unified constraint method based on constraint primitives to enhance the sampling-based planner. The planner can now adapt to different end effector constraints by opening up the input interface for constraints. A series of simulation tests were conducted to evaluate the TC-Framework-based planner, which demonstrated its ability to adapt to various end-effector constraints. Tests on a physical experimental system show that the framework allows the robot to perform various operational tasks without requiring modifications to the planner. This enhances the value of robots for applications in fields with diverse tasks.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 27 August 2024

Supriya Raheja, Rakesh Garg and Ritvik Garg

The Internet of Things (IoT) cloud platforms provide end-to-end solutions that integrate various capabilities such as application development, device and connectivity management…

Abstract

Purpose

The Internet of Things (IoT) cloud platforms provide end-to-end solutions that integrate various capabilities such as application development, device and connectivity management, data storage, data analysis and data visualization. The high use of these platforms results in their huge availability provided by different capabilities. Therefore, choosing the optimal IoT cloud platform to develop IoT applications successfully has become crucial. The key purpose of the present study is to implement a hybrid multi-attribute decision-making approach (MADM) to evaluate and select IoT cloud platforms.

Design/methodology/approach

The optimal selection of the IoT cloud platforms seems to be dependent on multiple attributes. Hence, the optimal selection of IoT cloud platforms problem is modeled as a MADM problem, and a hybrid approach named neutrosophic fuzzy set-Euclidean taxicab distance-based approach (NFS-ETDBA) is implemented to solve the same. NFS-ETDBA works on the calculation of assessment score for each alternative, i.e. IoT cloud platforms, by combining two different measures: Euclidean and taxicab distance.

Findings

A case study to illustrate the working of the proposed NFS-ETDBA for optimal selection of IoT cloud platforms is given. The results obtained on the basis of calculated assessment scores depict that “Azure IoT suite” is the most preferable IoT cloud platform, whereas “Salesman IoT cloud” is the least preferable.

Originality/value

The proposed NFS-ETDBA methodology for the IoT cloud platform selection is implemented for the first time in this field. ETDBA is highly capable of handling the large number of alternatives and the selection attributes involved in any decision-making process. Further, the use of fuzzy set theory (FST) makes it very easy to handle the impreciseness that may occur during the data collection through a questionnaire from a group of experts.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 30 October 2023

Xiangchun Li, Yuzhen Long, Chunli Yang, Yinqing Wang, Mingxiu Xing and Ying Jiang

Effective safety supervision plays a crucial role in ensuring safe production within coal mines. Conventional coal mine safety supervision (CMSS) in China has suffered from the…

Abstract

Purpose

Effective safety supervision plays a crucial role in ensuring safe production within coal mines. Conventional coal mine safety supervision (CMSS) in China has suffered from the problems of power-seeking, excessive resource consumption and poor timeliness. This paper aims to explore the Internet+ CMSS mode being emerged in China.

Design/methodology/approach

The evolution of CMSS systems underwent comprehensive scrutiny through a blend of qualitative and quantitative approaches. First, evolutionary game theory was used to analyze the necessity of incorporating Internet+ technology. Second, a system dynamics model of Internet+ CMSS was crafted, encompassing a system flow diagram and equations for various variables. The model was subsequently simulated by taking the W coal mine in Shanxi Province as a representative case study.

Findings

It was revealed that the expected safety profit from the Internet+ mode is 296.03% more than that from the conventional mode. The precise dissemination of law enforcement information was identified as a pivotal approach through which the Internet+ platform served as a conduit to foster synergistic collaboration among diverse elements within the system.

Practical implications

The outcomes of this study not only raise awareness about the potential of Internet+ technology in safety supervision but also establish a vital theoretical foundation for enhancing the efficacy of the Internet+ CMSS mode. The significance of these findings extends to fostering the wholesome and sustainable progress of the coal mining industry.

Originality/value

This research stands out as one of the limited studies that delve into the influence of Internet+ technology on CMSS. Building upon the pivotal approach identified, to the best of authors’ knowledge, a novel “multi-blind” working mechanism for Internet+ CMSS is introduced for the first time.

Details

International Journal of Energy Sector Management, vol. 18 no. 5
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 23 August 2022

Namal Bandaranayake, Senevi Kiridena and Asela K. Kulatunga

Achieving swift and even flow of cargo through the border, the ultimate objective of cross-border logistics (CBL) requires the close coordination and collaboration of a multitude…

Abstract

Purpose

Achieving swift and even flow of cargo through the border, the ultimate objective of cross-border logistics (CBL) requires the close coordination and collaboration of a multitude of stakeholders, as well as optimally configured systems. To achieve and sustain competitiveness in a dynamic international trade environment, CBL processes must undergo periodic analysis, improvement and optimization. This study aims to develop a modelling framework to capture CBL processes for analysis and improvement.

Design/methodology/approach

Relying on the extant literature, a meta-model is developed incorporating significant perspectives required to model CBL processes. Popular process modelling notations are evaluated against the meta-model and their ease of comprehension is also evaluated. The selected notation through evalution is augmented with addendums for a comprehensive depiction of CBL processes.

Findings

The capacity of role activity diagrams (RADs) to depict all perspectives, including interactions in a single diagram, makes them particularly suitable for modelling CBL processes. RADs have been complemented with physical flow diagrams and methods to capture temporal dimension, enabling a comprehensive view of CBL processes laying the foundation for insightful analysis.

Research limitations/implications

The meta-model developed in this paper paves the way to develop an analysis framework which requires further research.

Originality/value

The lack of well-accepted modelling notations for studying CBL processes prompts researchers to search and adapt different formalisms. This study has filled this gap by proposing a comprehensive modelling framework able to capture CBL processes at different granularities in rich detail. Not only does the developed meta-model aid in selecting the notation, it is also useful in analysing the constituent elements of CBL processes.

Details

Journal of Global Operations and Strategic Sourcing, vol. 17 no. 2
Type: Research Article
ISSN: 2398-5364

Keywords

Open Access
Book part
Publication date: 21 May 2024

Bianca Kramer and Jeroen Bosman

In academia, assessment is often narrow in its focus on research productivity, its application of a limited number of standardised metrics and its summative approach aimed at…

Abstract

In academia, assessment is often narrow in its focus on research productivity, its application of a limited number of standardised metrics and its summative approach aimed at selection. This approach, corresponding to an exclusive, subject-oriented concept of talent management, can be thought of as at odds with a broader view of the role of academic institutions as accelerating and improving science and scholarship and its societal impact. In recent years, open science practices as well as research integrity issues have increased awareness of the need for a more inclusive approach to assessment and talent management in academia, broadening assessment to reward the full spectrum of academic activities and, within that spectrum, deepening assessment by critically reflecting on the processes and indicators involved (both qualitative and quantitative). In terms of talent management, this would mean a move from research-focused assessment to assessment including all academic activities (including education, professional performance and leadership), a shift from focus on the individual to a focus on collaboration in teams (recognising contributions of both academic and support staff), increased attention for formative assessment and greater agency for those being evaluated, as well as around the data, tools and platforms used in assessment. Together, this represents a more inclusive, subject-oriented approach to talent management. Implementation of such changes requires involvement from university management, human resource management and academic and support staff at all career levels, and universities would benefit from participation in mutual learning initiatives currently taking shape in various regions of the world.

Open Access
Article
Publication date: 10 July 2024

Tianyun Shi, Zhoulong Wang, Jia You, Pengyue Guo, Lili Jiang, Huijin Fu and Xu Gao

The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail. The operating environment of the high-speed rail is…

Abstract

Purpose

The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail. The operating environment of the high-speed rail is complex, and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters, perimeter intrusion and external environmental hazards. The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.

Design/methodology/approach

In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments, the research status is elaborated, and the latest research progress and achievements of the team are introduced. This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological, perimeter and external environmental situation perception methods for high-speed rail operation.

Findings

Based on the technical route of “situational awareness evaluation warning active control,” a technical system for monitoring the safety of high-speed train operation environments has been formed. Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters, perimeter intrusion and the external environment on high-speed rail safety. These works strongly support the improvement of China’s railway environmental safety guarantee technology.

Originality/value

With the operation of CR450 high-speed trains with a speed of 400 km per hour and the application of high-speed train autonomous driving technology in the future, new and higher requirements have been put forward for the safety of high-speed rail operation environments. The following five aspects of work are urgently needed: (1) Research the single factor disaster mechanism of wind, rain, snow, lightning, etc. for high-speed railways with a speed of 400 kms per hour, and based on this, study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment, revealing the coupling disaster mechanism of multiple influencing factors; (2) Research covers multi-source data fusion methods and associated features such as disaster monitoring data, meteorological information, route characteristics and terrain and landforms, studying the spatio-temporal evolution laws of meteorological disasters, perimeter intrusions and external environmental hazards; (3) In terms of meteorological disaster situation awareness, research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines; (4) In terms of perimeter intrusion, research a multi-modal fusion perception method for typical scenarios of high-speed rail operation in all time, all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and (5) In terms of external environment, based on the existing general network framework for change detection, we will carry out research on change detection and algorithms in the surrounding environment of high-speed rail.

Article
Publication date: 6 October 2022

Ahmed Gouda Mohamed and Amr Mousa

Current research efforts exhibit a surge imperative for a building information modelling (BIM) approach that embodies a repository of all relevant data of existing building…

Abstract

Purpose

Current research efforts exhibit a surge imperative for a building information modelling (BIM) approach that embodies a repository of all relevant data of existing building components while monitoring and consistently recording numerous components’ functions throughout its lifecycle, especially in Egypt. This research paper aims to develop an integrated as-is BIM-facility management (FM) information model for the existing building’s components via a case study, depicting a repository for historical data and knowledge amassed from inspections and conveying maintenance decisions automatically during the FM practices.

Design/methodology/approach

The developed approach pursues four successive steps: data acquisition and processing of building components; components recognition from point clouds; modelling scanned point clouds; and quick response code information transfer to BIM components.

Findings

The proposed approach incorporates the as-is BIM with the building components’ as-is FM information to portray a repository for historical data and knowledge collected from inspections to proactively benefit facility managers in simplifying, expediting and enhancing maintenance decisions automatically during FM practices.

Originality/value

This paper presents a digital alternative to manual maintenance recordkeeping concerning building components to retrieve their as-is and historical data using a case study in Egypt. This paper proposes a broad scan to as-is information BIM approach for the existing building’s components to condone maintenance interventions using a versatile, affordable, readily available and multi-functional method for scanning the building’s components using a handheld tool.

Details

Journal of Facilities Management , vol. 22 no. 4
Type: Research Article
ISSN: 1472-5967

Keywords

Open Access
Article
Publication date: 3 April 2024

Tatiana da Costa Reis Moreira, Daniel Luiz de Mattos Nascimento, Yelena Smirnova and Ana Carla de Souza Gomes dos Santos

This paper explores Lean Six Sigma principles and the DMAIC (define, measure, analyze, improve, control) methodology to propose a new Lean Six Sigma 4.0 (LSS 4.0) framework for…

Abstract

Purpose

This paper explores Lean Six Sigma principles and the DMAIC (define, measure, analyze, improve, control) methodology to propose a new Lean Six Sigma 4.0 (LSS 4.0) framework for employee occupational exams and address the real-world issue of high-variability exams that may arise.

Design/methodology/approach

This study uses mixed methods, combining qualitative and quantitative data collection. A detailed case study assesses the impact of LSS interventions on the exam management process and tests the applicability of the proposed LSS 4.0 framework for employee occupational exams.

Findings

The results reveal that changing the health service supplier in the explored organization caused a substantial raise in occupational exams, leading to increased costs. By using syntactic interoperability, lean, six sigma and DMAIC approaches, improvements were identified, addressing process deviations and information requirements. Implementing corrective actions improved the exam process, reducing the number of exams and associated expenses.

Research limitations/implications

It is important to acknowledge certain limitations, such as the specific context of the case study and the exclusion of certain exam categories.

Practical implications

The practical implications of this research are substantial, providing organizations with valuable managerial insights into improving efficiency, reducing costs and ensuring regulatory compliance while managing occupational exams.

Originality/value

This study fills a research gap by applying LSS 4.0 to occupational exam management, offering a practical framework for organizations. It contributes to the existing knowledge base by addressing a relatively novel context and providing a detailed roadmap for process optimization.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 63