Search results

1 – 10 of 119
Open Access
Article
Publication date: 9 March 2022

Mohd Aslam, Mohd Danish Siddiqi and Aliya Naaz Siddiqui

In 1979, P. Wintgen obtained a basic relationship between the extrinsic normal curvature the intrinsic Gauss curvature, and squared mean curvature of any surface in a Euclidean…

Abstract

Purpose

In 1979, P. Wintgen obtained a basic relationship between the extrinsic normal curvature the intrinsic Gauss curvature, and squared mean curvature of any surface in a Euclidean 4-space with the equality holding if and only if the curvature ellipse is a circle. In 1999, P. J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken gave a conjecture of Wintgen inequality, named as the DDVV-conjecture, for general Riemannian submanifolds in real space forms. Later on, this conjecture was proven to be true by Z. Lu and by Ge and Z. Tang independently. Since then, the study of Wintgen’s inequalities and Wintgen ideal submanifolds has attracted many researchers, and a lot of interesting results have been found during the last 15 years. The main purpose of this paper is to extend this conjecture of Wintgen inequality for bi-slant submanifold in conformal Sasakian space form endowed with a quarter symmetric metric connection.

Design/methodology/approach

The authors used standard technique for obtaining generalized Wintgen inequality for bi-slant submanifold in conformal Sasakian space form endowed with a quarter symmetric metric connection.

Findings

The authors establish the generalized Wintgen inequality for bi-slant submanifold in conformal Sasakian space form endowed with a quarter symmetric metric connection, and also find conditions under which the equality holds. Some particular cases are also stated.

Originality/value

The research may be a challenge for new developments focused on new relationships in terms of various invariants, for different types of submanifolds in that ambient space with several connections.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Abstract

Details

Functional Structure Inference
Type: Book
ISBN: 978-0-44453-061-5

Article
Publication date: 8 April 2021

Bhumeshwar Patle, Shyh-Leh Chen, Brijesh Patel, Sunil Kumar Kashyap and Sudarshan Sanap

With the increasing demand for surveillance and smart transportation, drone technology has become the center of attraction for robotics researchers. This study aims to introduce a…

Abstract

Purpose

With the increasing demand for surveillance and smart transportation, drone technology has become the center of attraction for robotics researchers. This study aims to introduce a new path planning approach to drone navigation based on topology in an uncertain environment. The main objective of this study is to use the Ricci flow evolution equation of metric and curvature tensor over angular Riemannian metric, and manifold for achieving navigational goals such as path length optimization at the minimum required time, collision-free obstacle avoidance in static and dynamic environments and reaching to the static and dynamic goals. The proposed navigational controller performs linearly and nonlinearly both with reduced error-based objective function by Riemannian metric and scalar curvature, respectively.

Design/methodology/approach

Topology and manifolds application-based methodology establishes the resultant drone. The trajectory planning and its optimization are controlled by the system of evolution equation over Ricci flow entropy. The navigation follows the Riemannian metric-based optimal path with an angular trajectory in the range from 0° to 360°. The obstacle avoidance in static and dynamic environments is controlled by the metric tensor and curvature tensor, respectively. The in-house drone is developed and coded using C++. For comparison of the real-time results and simulation results in static and dynamic environments, the simulation study has been conducted using MATLAB software. The proposed controller follows the topological programming constituted with manifold-based objective function and Riemannian metric, and scalar curvature-based constraints for linear and nonlinear navigation, respectively.

Findings

This proposed study demonstrates the possibility to develop the new topology-based efficient path planning approach for navigation of drone and provides a unique way to develop an innovative system having characteristics of static and dynamic obstacle avoidance and moving goal chasing in an uncertain environment. From the results obtained in the simulation and real-time environments, satisfactory agreements have been seen in terms of navigational parameters with the minimum error that justifies the significant working of the proposed controller. Additionally, the comparison of the proposed navigational controller with the other artificial intelligent controllers reveals performance improvement.

Originality/value

In this study, a new topological controller has been proposed for drone navigation. The topological drone navigation comprises the effective speed control and collision-free decisions corresponding to the Ricci flow equation and Ricci curvature over the Riemannian metric, respectively.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 June 2009

William D. York, D. Keith Walters and James H. Leylek

The purpose of this paper is to present a new eddy‐viscosity formulation designed to exhibit a correct response to streamline curvature and flow rotation. The formulation is…

Abstract

Purpose

The purpose of this paper is to present a new eddy‐viscosity formulation designed to exhibit a correct response to streamline curvature and flow rotation. The formulation is implemented into a linear k‐ ε turbulence model with a two‐layer near‐wall treatment in a commercial computational fluid dynamics (CFD) solver.

Design/methodology/approach

A simple, robust formula is developed for the eddy‐viscosity that is curvature/rotation sensitive and also satisfies realizability and invariance principles. The new model is tested on several two‐ and three‐dimensional problems, including rotating channel flow, U‐bend flow and internally cooled turbine airfoil conjugate heat transfer. Predictions are compared to those with popular eddy‐viscosity models.

Findings

Converged solutions to a variety of turbulent flow problems are obtained with no additional computational expense over existing two‐equation models. In all cases, results with the new model are superior to two other popular k‐ ε model variants, especially for regions in which rapid rotation or strong streamline curvature exists.

Research limitations/implications

The approach adopted here for linear eddy‐viscosity models may be extended in a straightforward manner to non‐linear eddy‐viscosity or explicit algebraic stress models.

Practical implications

The new model is a simple “plug‐in” formula that contains important physics not included in most linear eddy‐viscosity models and is easy to implement in most flow solvers.

Originality/value

The present model for curved and rotating flows is developed without the need for second derivatives of velocity in the formulation, which are known to present difficulties with unstructured meshes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1992

B.P. LEONARD and SIMIN MOKHTARI

In 1982, Smith and Hutton published comparative results of several different convection‐diffusion schemes applied to a specially devised test problem involving…

Abstract

In 1982, Smith and Hutton published comparative results of several different convection‐diffusion schemes applied to a specially devised test problem involving near‐discontinuities and strong streamline curvature. First‐order methods showed significant artificial diffusion, whereas higher‐order methods gave less smearing but had a tendency to overshoot and oscillate. Perhaps because unphysical oscillations are more obvious than unphysical smearing, the intervening period has seen a rise in popularity of low‐order artificially diffusive schemes, especially in the numerical heat‐transfer industry. This paper presents an alternative strategy of using non‐artificially diffusive higher‐order methods, while maintaining strictly monotonic transitions through the use of simple flux‐limiter constraints. Limited third‐order upwinding is usually found to be the most cost‐effective basic convection scheme. Tighter resolution of discontinuities can be obtained at little additional cost by using automatic adaptive stencil expansion to higher order in local regions, as needed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1992

MICHAEL J. BOCKELIE and PETER R. EISEMAN

An adaptive grid solution method is described for computing the time accurate solution of an unsteady flow problem. The solution method consists of three parts: a grid point…

Abstract

An adaptive grid solution method is described for computing the time accurate solution of an unsteady flow problem. The solution method consists of three parts: a grid point redistribution method; an unsteady Euler equation solver; and a temporal coupling routine that links the dynamic grid to the flow solver. The grid movement technique is a direct curve by curve method containing grid controls that generate a smooth grid that resolves the severe solution gradients and the sharp transitions in the solution gradients. By design, the temporal coupling procedure provides a grid that does not lag the solution in time. The adaptive solution method is tested by computing the unsteady inviscid solutions for a one‐dimensional shock tube and a two‐dimensional shock vortex interaction. Quantitative comparisons are made between the adaptive solutions, theoretical solutions and numerical solutions computed on stationary grids. Test results demonstrate the good temporal tracking of the solution by the adaptive grid, and the ability of the adaptive method to capture an unsteady solution of comparable accuracy to that computed on a stationary grid containing significantly more grid points than used in the adaptive grid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 29 May 2009

W. Erwin Diewert and Kevin J. Fox

A concise introduction to the normalized quadratic expenditure or cost function is provided so that the interested reader will have the necessary information to understand and use…

Abstract

A concise introduction to the normalized quadratic expenditure or cost function is provided so that the interested reader will have the necessary information to understand and use this functional form. The normalized quadratic is an attractive functional form for use in empirical applications as correct curvature can be imposed in a parsimonious way without losing the desirable property of flexibility. We believe it is unique in this regard. Topics covered include the problem of cardinalizing utility, the modeling of nonhomothetic preferences, the use of spline functions to achieve greater flexibility, and the use of a “semiflexible” approach to make it feasible to estimate systems of equations with a large number of commodities.

Details

Quantifying Consumer Preferences
Type: Book
ISBN: 978-1-84855-313-2

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1133

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 January 2023

Kaiwen Pang, Xianbei Huang, Zhuqing Liu, Yaojun Li, Wei Yang and Jiaxing Lu

This study aims to research the prediction performance of the bifurcation approach with different base models in different kinds of turbulent flows with rotation and curvature.

Abstract

Purpose

This study aims to research the prediction performance of the bifurcation approach with different base models in different kinds of turbulent flows with rotation and curvature.

Design/methodology/approach

The kω and Shear-Stress Transport (SST) kω models are modified by using the complete eddy viscosity coefficient expression, and the latter is modified by using two sets of model coefficients. The two bifurcation models were tested in three cases: rotating channel flow with system rotation, Taylor–Couette flow with wall rotation and curvature effect and swirling flow through an abrupt axisymmetric expansion with inlet swirling flow.

Findings

In these flows, the bifurcation approach can significantly improve the prediction performance of the base model in the fluctuation velocity. The deviation of the BSkO model is slightly superior to the BkO model by about 2% in the Taylor–Couette flow. The prediction effect of the root-mean-square (RMS) velocity of the BSkO model increases by about 4–5% as the number of grids increases about 2.37 times, and the best is the Large Eddy Simulation (LES) grid used. Finally, compared with the SST kω model, the average iteration time of the SST with curvature correction (SST-CC), bifurcation kω (BkO) and bifurcation SST kω (BSkO) models increased by 27.7%, 86.9% and 62.3%, respectively.

Originality/value

This study is helpful to understand further the application of the bifurcation method in the turbulence model.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 5 April 2024

Emir Malikov, Shunan Zhao and Jingfang Zhang

There is growing empirical evidence that firm heterogeneity is technologically non-neutral. This chapter extends the Gandhi, Navarro, and Rivers (2020) proxy variable framework…

Abstract

There is growing empirical evidence that firm heterogeneity is technologically non-neutral. This chapter extends the Gandhi, Navarro, and Rivers (2020) proxy variable framework for structurally identifying production functions to a more general case when latent firm productivity is multi-dimensional, with both factor-neutral and (biased) factor-augmenting components. Unlike alternative methodologies, the proposed model can be identified under weaker data requirements, notably, without relying on the typically unavailable cross-sectional variation in input prices for instrumentation. When markets are perfectly competitive, point identification is achieved by leveraging the information contained in static optimality conditions, effectively adopting a system-of-equations approach. It is also shown how one can partially identify the non-neutral production technology in the traditional proxy variable framework when firms have market power.

1 – 10 of 119