To read the full version of this content please select one of the options below:


MICHAEL J. BOCKELIE (Computer Sciences Corporation, Hampton, VA 23666, USA)
PETER R. EISEMAN (Program Development Corporation, White Plains, NY 10601, USA)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 1 February 1992


An adaptive grid solution method is described for computing the time accurate solution of an unsteady flow problem. The solution method consists of three parts: a grid point redistribution method; an unsteady Euler equation solver; and a temporal coupling routine that links the dynamic grid to the flow solver. The grid movement technique is a direct curve by curve method containing grid controls that generate a smooth grid that resolves the severe solution gradients and the sharp transitions in the solution gradients. By design, the temporal coupling procedure provides a grid that does not lag the solution in time. The adaptive solution method is tested by computing the unsteady inviscid solutions for a one‐dimensional shock tube and a two‐dimensional shock vortex interaction. Quantitative comparisons are made between the adaptive solutions, theoretical solutions and numerical solutions computed on stationary grids. Test results demonstrate the good temporal tracking of the solution by the adaptive grid, and the ability of the adaptive method to capture an unsteady solution of comparable accuracy to that computed on a stationary grid containing significantly more grid points than used in the adaptive grid.



BOCKELIE, M.J. and EISEMAN, P.R. (1992), "ADAPTIVE GRID METHOD FOR UNSTEADY FLOW PROBLEMS", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 2 No. 2, pp. 171-190.




Copyright © 1992, MCB UP Limited