Search results

1 – 10 of over 45000
Article
Publication date: 6 August 2020

Radoslaw Nowak

This paper aims to provide an alternative explanation for how organizations could increase levels of organizational identification, in turn reducing employee turnover intention…

Abstract

Purpose

This paper aims to provide an alternative explanation for how organizations could increase levels of organizational identification, in turn reducing employee turnover intention. Specifically, the study empirically tests the joint effect of two types of organizational resources – structural empowerment and serving culture (SE*SC) – on employee identification. Moreover, it investigates the mediating effect of organizational identification on the relationship between the joint effect (SE*SC) and turnover intention.

Design/methodology/approach

The data were collected in 2018 from employees working in a higher education institution located in the USA. Structural equation modeling was used to test the proposed model.

Findings

Statistical analysis reveals the positive joint effect (SE*SC) on organizational identification and the mediating effect of identification on the relationship between the joint effect (SE*SC) and turnover intention.

Originality/value

This study contributes to past research by revealing a new important mechanism. Business organizations could increase levels of employee identification and, in turn, reduce turnover by providing empowering resources that allow employees to successfully complete their jobs. Moreover, the study also contributes to practice by providing some recommendations that managers may implement to improve internal effectiveness in their respective organizations.

Details

Management Research Review, vol. 44 no. 2
Type: Research Article
ISSN: 2040-8269

Keywords

Article
Publication date: 10 June 2019

Young Mee Kim and Se Young Kim

The purpose of this paper is to identify the relationships between structural empowerment and patient identification behaviors of nurses.

Abstract

Purpose

The purpose of this paper is to identify the relationships between structural empowerment and patient identification behaviors of nurses.

Design/methodology/approach

The present study was a descriptive survey using a self-reported questionnaire, following a quality improvement project at a hospital in South Korea. The participants included 984 registered nurses, who administer medication and transfusions to patients in the hospital. Data were analyzed using the t-test, ANOVA, Scheffé’s test, Pearson correlation coefficients and multiple regression analysis.

Findings

The patient identification behaviors of nurses were significantly correlated with opportunity, support, information, resources, formal power and informal power of structural empowerment. The support, information and informal power of structural empowerment, as well as the age and gender of the participants explained 10.7 percent of the variance in the patient identification behaviors of nurses.

Research limitations/implications

The present study has some limitations. Although the data collected by the cross-sectional survey were analyzed, causal analysis could not have been conducted. Nursing managers can promote safety by creating a work environment that facilitates access to the support, information and resources needed for nurses to perform their duties effectively; providing opportunities for nurses to learn and develop professionally; acknowledging the achievements of nurses; and expanding their duties, so that nurses can demonstrate greater work flexibility. Future studies should investigate structural empowerment in multiple nursing organizations, and particularly the organizational characteristics that affect structural empowerment.

Originality/value

The present study confirms that structural empowerment influences the patient identification behaviors of nurses.

Details

International Journal of Health Care Quality Assurance, vol. 32 no. 5
Type: Research Article
ISSN: 0952-6862

Keywords

Abstract

Identification of shocks of interest is a central problem in structural vector autoregressive (SVAR) modeling. Identification is often achieved by imposing restrictions on the impact or long-run effects of shocks or by considering sign restrictions for the impulse responses. In a number of articles changes in the volatility of the shocks have also been used for identification. The present study focuses on the latter device. Some possible setups for identification via heteroskedasticity are reviewed and their potential and limitations are discussed. Two detailed examples are considered to illustrate the approach.

Details

VAR Models in Macroeconomics – New Developments and Applications: Essays in Honor of Christopher A. Sims
Type: Book
ISBN: 978-1-78190-752-8

Keywords

Book part
Publication date: 22 November 2012

Enrique Martínez-García, Diego Vilán and Mark A. Wynne

Open-Economy models are central to the discussion of the trade-offs monetary policy faces in an increasingly more globalized world (e.g., Marínez-García & Wynne, 2010), but…

Abstract

Open-Economy models are central to the discussion of the trade-offs monetary policy faces in an increasingly more globalized world (e.g., Marínez-García & Wynne, 2010), but bringing them to the data is not without its challenges. Controlling for misspecification bias, we trace the problem of uncertainty surrounding structural parameter estimation in the context of a fully specified New Open Economy Macro (NOEM) model partly to sample size. We suggest that standard macroeconomic time series with a coverage of less than forty years may not be informative enough for some parameters of interest to be recovered with precision. We also illustrate how uncertainty also arises from weak structural identification, irrespective of the sample size. This remains a concern for empirical research and we recommend estimation with simulated observations before using actual data as a way of detecting structural parameters that are prone to weak identification. We also recommend careful evaluation and documentation of the implementation strategy (specially in the selection of observables) as it can have significant effects on the strength of identification of key model parameters.

Details

DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments
Type: Book
ISBN: 978-1-78190-305-6

Keywords

Article
Publication date: 31 May 2013

Rajendra Machavaram and Shankar Krishnapillai

The purpose of this paper is to provide an effective and simple technique to structural damage identification, particularly to identify a crack in a structure. Artificial neural…

Abstract

Purpose

The purpose of this paper is to provide an effective and simple technique to structural damage identification, particularly to identify a crack in a structure. Artificial neural networks approach is an alternative to identify the extent and location of the damage over the classical methods. Radial basis function (RBF) networks are good at function mapping and generalization ability among the various neural network approaches. RBF neural networks are chosen for the present study of crack identification.

Design/methodology/approach

Analyzing the vibration response of a structure is an effective way to monitor its health and even to detect the damage. A novel two‐stage improved radial basis function (IRBF) neural network methodology with conventional RBF in the first stage and a reduced search space moving technique in the second stage is proposed to identify the crack in a cantilever beam structure in the frequency domain. Latin hypercube sampling (LHS) technique is used in both stages to sample the frequency modal patterns to train the proposed network. Study is also conducted with and without addition of 5% white noise to the input patterns to simulate the experimental errors.

Findings

The results show a significant improvement in identifying the location and magnitude of a crack by the proposed IRBF method, in comparison with conventional RBF method and other classical methods. In case of crack location in a beam, the average identification error over 12 test cases was 0.69 per cent by IRBF network compared to 4.88 per cent by conventional RBF. Similar improvements are reported when compared to hybrid CPN BPN networks. It also requires much less computational effort as compared to other hybrid neural network approaches and classical methods.

Originality/value

The proposed novel IRBF crack identification technique is unique in originality and not reported elsewhere. It can identify the crack location and crack depth with very good accuracy, less computational effort and ease of implementation.

Open Access
Article
Publication date: 3 July 2017

Beatriz Ortiz, Mario J. Donate and Fátima Guadamillas

The purpose of this paper is to analyze the mediating effect of the identification of valuable external knowledge on the relationship between the development of…

4954

Abstract

Purpose

The purpose of this paper is to analyze the mediating effect of the identification of valuable external knowledge on the relationship between the development of inter-organizational ties (structural social capital) and the acquisition of external knowledge.

Design/methodology/approach

Using a sample of 87 firms from Spanish biotechnology and pharmaceutics industries, the authors have tested the proposed mediation hypothesis by applying the partial least squares technique to a structural equations model.

Findings

The study results show that those firms with stronger, more frequent and closer inter-relationships are able to increase the amount of intentionally acquired knowledge, partly due to the greater level of development of their knowledge identification capability. Thus, firms with a higher capability to recognize the value of the knowledge embedded in their inter-organizational networks will be more likely to design better strategies to acquire and integrate such knowledge into their current knowledge bases for either present or future use.

Originality/value

This research contributes to knowledge management and social capital literature by means of the study of two key determinants of knowledge acquisition – structural social capital and knowledge identification capability – and the explanation of their relationships of mutual influence. The paper thus tries to fill this literature gap and connects the relational perspective of social capital with the knowledge-based view from a strategic point of view.

Details

European Journal of Management and Business Economics, vol. 26 no. 1
Type: Research Article
ISSN: 2444-8451

Keywords

Article
Publication date: 16 November 2010

Hua‐Peng Chen and Nenad Bicanic

The paper aims to identify both the location and severity of damage in complex framed buildings using limited noisy vibration measurements. The study aims to directly adopt…

Abstract

Purpose

The paper aims to identify both the location and severity of damage in complex framed buildings using limited noisy vibration measurements. The study aims to directly adopt incomplete measured mode shapes in structural damage identification and effectively reduce the influence of measurement errors on predictions of structural damage.

Design/methodology/approach

Damage indicators are properly chosen to reflect both the location and severity of damage in framed buildings at element level for braces and at critical point level for beams and columns. Basic equations for an iterative solution procedure are provided to be solved for the chosen damage indicators. The Tikhonov regularisation method incorporating the L‐curve criterion for determining the regularisation parameter is employed to produce stable and robust solutions for damage indicators.

Findings

The proposed method can correctly assess the quantification of structural damage at specific locations in complex framed buildings using only limited information on modal data measurements with errors, without requiring mode shape expansion techniques or model reduction processes.

Research limitations/implications

Further work may be needed to improve the accuracy of inverse predictions for very small structural damage from noisy measurements.

Practical implications

The paper includes implications for the development of reliable techniques for rapid and on‐line damage assessment and health monitoring of framed buildings.

Originality/value

The paper offers a practical approach and procedure for correctly detecting structural damage and assessing structural condition from limited noisy vibration measurements.

Details

Engineering Computations, vol. 27 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 April 2023

R. Anish and K. Shankar

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints…

Abstract

Purpose

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints having single and double bolts. The paper also investigates the identification performance of the proposed power flow method over conventional acceleration-matching (AM) methods and other methods in the literature for nonlinear identification.

Design/methodology/approach

A parametric model of the joint assembly formulated using generic beam element is used for numerically simulating the experimental response under sinusoidal excitations. The proposed method uses the concept of substructure IPFB criteria, whereby the algebraic sum of power flow components within a substructure is equal to zero, for the formulation of an objective function. The joint parameter identification problem was treated as an inverse formulation by minimizing the objective function using the Particle Swarm Optimization (PSO) algorithm, with the unknown parameters as the optimization variables.

Findings

The errors associated with identified numerical results through the instantaneous power flow approach have been compared with the conventional AM method using the same model and are found to be more accurate. The outcome of the proposed method is also compared with other nonlinear time-domain structural identification (SI) methods from the literature to show the acceptability of the results.

Originality/value

In this paper, the concept of IPFB-based identification method was extended to a more specific practical application of nonlinear joints which is not reported in the literature. Identification studies were carried out for both single-bolted and double-bolted lap joints with noise-free and noise-contamination cases. In the current study, only the zone of interest (substructure) needs to be modelled, thus reducing computational complexity, and only interface sensors are required in this method. If the force application point is outside the substructure, there is no need to measure the forcing response also.

Article
Publication date: 5 September 2018

Ramzi Lajili, Olivier Bareille, Mohamed Lamjed Bouazizi, Mohamed Ichchou and Noureddine Bouhaddi

This paper aims to propose numerical-based and experiment-based identification processes, accounting for uncertainties to identify structural parameters, in a wave propagation…

Abstract

Purpose

This paper aims to propose numerical-based and experiment-based identification processes, accounting for uncertainties to identify structural parameters, in a wave propagation framework.

Design/methodology/approach

A variant of the inhomogeneous wave correlation (IWC) method is proposed. It consists on identifying the propagation parameters, such as the wavenumber and the wave attenuation, from the frequency response functions. The latters can be computed numerically or experimentally. The identification process is thus called numerical-based or experiment-based, respectively. The proposed variant of the IWC method is then combined with the Latin hypercube sampling method for uncertainty propagation. Stochastic processes are consequently proposed allowing more realistic identification.

Findings

The proposed variant of the IWC method permits to identify accurately the propagation parameters of isotropic and composite beams, whatever the type of the identification process in which it is included: numerical-based or experiment-based. Its efficiency is proved with respect to an analytical model and the Mc Daniel method, considered as reference. The application of the stochastic identification processes shows good agreement between simulation and experiment-based results and that all identified parameters are affected by uncertainties, except damping.

Originality/value

The proposed variant of the IWC method is an accurate alternative for structural identification on wide frequency ranges. Numerical-based identification process can reduce experiments’ cost without significant loss of accuracy. Statistical investigations of the randomness of identified parameters illustrate the robustness of identification against uncertainties.

Article
Publication date: 19 December 2017

K. Shankar and N. Jinesh

The purpose of this paper is to provide an effective and simple technique for structural parameter identification, particularly to identify multiple cracks in a structure using…

Abstract

Purpose

The purpose of this paper is to provide an effective and simple technique for structural parameter identification, particularly to identify multiple cracks in a structure using simultaneous measurement of acceleration responses and voltage signals from PZT patches which is a multidisciplinary approach. A hybrid element constituted of one-dimensional beam element and a PZT sensor is used with reduced material properties which is very convenient for beams and is a novel application for inverse problems.

Design/methodology/approach

Multi-objective formulation is used whereby structural parameters are identified by minimizing the deviation between the predicted and measured values from the PZT patch and acceleration responses, when subjected to excitation. In the proposed method, a patch is attached to either end of the fixed beam. Using particle swarm optimization algorithm, normalized fitness functions are defined for both voltage and acceleration components with weighted aggregation multi-objective optimization technique. The signals are polluted with 5 percent Gaussian noise to simulate experimental noise. The effects of various weighting factors for the combined objective function are studied. The scheme is also experimentally validated by identification of cracks in a fixed-fixed beam.

Findings

The numerical and experimental results shows that significant improvement in accuracy of damage detection is achieved by the combined multidisciplinary method, when compared with only voltage or only acceleration-matching method as well as with other methods.

Originality/value

The proposed multidisciplinary crack identification approach, which is based on one-dimensional PZT patch model as well as conventional acceleration method, is not reported in the literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 45000