Search results

1 – 10 of 55
Article
Publication date: 2 January 2018

V.V. Ravikumar and S. Kumaran

The purpose of this paper is to study the corrosion behaviour of Al-12Zn-3Mg-2.5Cu alloy by cast, precipitation hardening and non-isothermal step rolling cum cold/cryo rolling

Abstract

Purpose

The purpose of this paper is to study the corrosion behaviour of Al-12Zn-3Mg-2.5Cu alloy by cast, precipitation hardening and non-isothermal step rolling cum cold/cryo rolling (−80 and −196°C) in 3.5 per cent NaCl solution.

Design/methodology/approach

Aluminium alloy with high alloying concentration (Zn: 12 per cent, Mg: 3 per cent, Cu: 2.5 per cent) was prepared by squeeze casting method with controlled process parameters. The cast alloy was solution treated at 450°C for 24 h and aged at 120°C with varying time intervals. Initially, the alloy also underwent non-isothermal step rolling from 6 mm to 3 mm at 400-100°C at the step of 100ºC with 15% reduction in thickness. Non-isothermal rolled alloy (3 mm thickness) was the starting material for further rolling at three different temperatures, such as room temperature, −80 and −190°C with 85 per cent reduction. Microstructural evolution during precipitation and thermo-mechanical processing was studied with the help of optical microscopy and electron microscopy. A potentio-dynamic polarization study was performed to evaluate the corrosion behaviour of Al-12Zn-3Mg-2.5Cu alloy processed in different conditions in 3.5 per cent NaCl solution.

Findings

There is a distinct evidence that the alloy exhibits varying corrosion resistance by changing its structural features. In fact, the alloy with ultra-fine grained structure exhibits good corrosion resistance than that of alloy in cast. This is attributed to a greater grain boundary region with high dislocation density, and plastic strain adversely affects the corrosion resistance.

Originality/value

The results obtained by this investigation help in understanding the effect of precipitation hardening and non-isothermal step rolling cum cold/cryo rolling (−80 and −196°C) on corrosion behaviour.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 2006

Jaroslav Mackerle

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can…

4715

Abstract

Purpose

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can help them to be up‐to‐date.

Design/methodology/approach

A range of published (1996‐2005) works, which aims to provide theoretical as well as practical information on the material processing namely bulk material forming. Bulk deformation processes used in practice change the shape of the workpiece by plastic deformations under forces applied by tools and dies.

Findings

Provides information about each source, indicating what can be found there. Listed references contain journal papers, conference proceedings and theses/dissertations on the subject.

Research limitations/implications

It is an exhaustive list of papers (1,693 references are listed) but some papers may be omitted. The emphasis is to present papers written in English language. Sheet material forming processes are not included.

Practical implications

A very useful source of information for theoretical and practical researchers in computational material forming as well as in academia or for those who have recently obtained a position in this field.

Originality/value

There are not many bibliographies published in this field of engineering. This paper offers help to experts and individuals interested in computational analyses and simulations of material forming processes.

Details

Engineering Computations, vol. 23 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 August 2023

Zaheer Abbas, Sabeeh Khaliq, Sana Usman and Muhammad Yousuf Rafiq

The coating process is broadly employed in the manufacturing of wallpapers, adhesive tapes, wrapping, protection of fabrics and metals, X-ray and photographic films…

Abstract

Purpose

The coating process is broadly employed in the manufacturing of wallpapers, adhesive tapes, wrapping, protection of fabrics and metals, X-ray and photographic films, beautification, books and magazines, film foils, magnetic records, coated paper, etc.

Design/methodology/approach

In this study, an incompressible flow of non-Newtonian fluid is modeled to inspect the rheological behavior of finite coating thickness in the reverse roll coating process. With the assistance of lubrication approximation theory (LAT), the dimensionless form of governing expressions is simplified. Exact solutions for distributions for velocity, flow rate, temperature and pressure gradient attained utilizing perturbation technique and their variation is presented as well as discussed in graphs. Meanwhile, some important factors from an engineering perspective including coating thickness and transition point were calculated mathematically and are displayed in a tabular manner. Also, streamlines are drawn to observe the flow pattern.

Findings

Prandtl fluid parameters provide a controlling factor to regulate the flow rate, velocity, coating thickness, and pressure gradient leading to an efficient coating process. Moreover, the Brinkman number and Prandtl fluid parameters significantly improve the temperature distribution.

Originality/value

In the literature, this study fills a gap in the theoretical prediction of coating thickness rheologically influenced by Prandtl fluid in reverse roll coating process.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 June 2015

Soheila Shabaniverki and Siamak Serajzadeh

– The purpose of this paper is to study the kinetics of static recovery in cold-rolled aluminum alloy under different heating rates.

Abstract

Purpose

The purpose of this paper is to study the kinetics of static recovery in cold-rolled aluminum alloy under different heating rates.

Design/methodology/approach

Deformation modeling was first performed to assess the distributions of plastic strain and stress within the deformed alloy. In the next stage, thermal analysis and the rate equation of static recovery were employed to determine the progress of static recovery under non-isothermal conditions. Accordingly, a thermal finite element analysis and the Runge-Kutta method were utilized to handle the transient heat conduction and the progress of static recovery. Finally, low temperature annealing heat treatments were conducted to verify the model predictions. Accordingly, the tensile tests were conducted to measure the yield stresses of cold-rolled plates subjected to the subsequent annealing treatment at different temperatures and durations.

Findings

The results indicate that the employed algorithm can be used as an appropriate predictive tool for designing a low temperature heat treatment schedule to achieve the desired yield stress.

Originality/value

The kinetics of non-isothermal recovery and resulting yield stress are well predicted under practical annealing conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 August 2019

G. Yoganjaneyulu, Y. Phaneendra, V.V. Ravikumar and C. Sathiya Narayanan

The purpose of this paper is to investigate the void coalescence and corrosion behaviour of titanium Grade 4 sheets during single point incremental forming (SPIF) process with…

Abstract

Purpose

The purpose of this paper is to investigate the void coalescence and corrosion behaviour of titanium Grade 4 sheets during single point incremental forming (SPIF) process with various spindle rotational speeds. The development of corrosion pits in 3.5 (%) NaCl solution has also been studied during SPIF process.

Design/methodology/approach

In this current research work, the void coalescence analysis and corrosion behaviour of titanium Grade 4 specimens were studied. A potentio-dynamic polarization (PDP) study was conducted to investigate the corrosion behaviour of titanium Grade 4 processed samples with various spindle speeds in 3.5 (%) NaCl solution. The scanning electron microscope and transmission electron microscope analysis was carried out to study the fracture behaviour and corrosion morphology of processed samples.

Findings

The titanium Grade 4 sheets obtained better formability and corrosion resistance by increasing the CNC spindle rotational speeds. In fact that, the significant plastic deformation affects the corrosion rate with various spindle speeds were recorded.

Originality/value

The spindle rotational speeds and vertical step depths increases then the titanium Grade 4 sheets showed better formability, void coalescence and corrosion behaviour as the same is evidenced in forming limit diagram and PDP curves.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1446

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1996

Ken‐ichiro Mori, Kozo Osakada and Shinji Takaoka

The non‐isothermal filling of a powder/binder mixture in metal injection moulding is simulated by the viscoplastic and the heat conduction finite element methods. Proposes a…

Abstract

The non‐isothermal filling of a powder/binder mixture in metal injection moulding is simulated by the viscoplastic and the heat conduction finite element methods. Proposes a simplified three‐dimensional scheme for the moulding of products with a non‐uniform thickness distribution. The computing time for the simplified three‐dimensional scheme is of the same order as that for two‐dimensional problems. Deals with complex overlapping between the surfaces of the mixture, resulting from the occurrence of jetting during the moulding, by the use of a remeshing scheme. The material flow in metal injection moulding into a rectangular die with a linear thickness distribution is simulated. The jetting behaviour is remarkably influenced by the thickness distribution of the die.

Details

Engineering Computations, vol. 13 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2000

K.V. Prasad, M. Subhas Abel and Sujit Kumar Khan

Visco‐elastic fluid flow and heat transfer in a porous medium over a non‐isothermal stretching sheet have been investigated. The flow is influenced by linearly stretching the…

Abstract

Visco‐elastic fluid flow and heat transfer in a porous medium over a non‐isothermal stretching sheet have been investigated. The flow is influenced by linearly stretching the sheet in the presence of suction, blowing and impermeability of the wall. Thermal conductivity is considered to vary linearly with temperature. The intricate non‐linear problem has been solved numerically by shooting technique with fourth order Runge‐Kutta algorithm after using perturbation method. The zeroth order solutions are obtained analytically in the form of Kummer’s function. An analysis has been carried out for two different cases, namely prescribed surface temperature (PST) and prescribed heat flux (PHF) to get the effect of porosity and visco‐elasticity at various physical situations. The important finding is that the effect of visco‐elasticity and porosity is to increase the wall temperature in case of blowing and to decrease in both the cases of suction and when the stretching sheet is impermeable.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 10 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1990

I. St. Doltsinis

A synopsis is presented of the numerical finite element methodology currently in use at the Institute for Computer Applications (ICA) for the simulation of industrial forming…

Abstract

A synopsis is presented of the numerical finite element methodology currently in use at the Institute for Computer Applications (ICA) for the simulation of industrial forming processes. The development of the method is based on the inelastic properties of the material with an extension towards the inclusion of elastic effects and accounts for the thermal phenomena occurring in the course of the deformation. An essential constituent of the computational procedure is the treatment of the unsteady contact developing between the workpiece material and the tool during forming, and of the associated friction phenomena. Automatic mesh generation and variable discretization adaptable to the development of the numerical solution are of importance for industrial applications. These aspects are presented and discussed. Furthermore, solution techniques for thermomechanically coupled problems are considered and investigated with respect to their numerical properties. Application to industrial forming processes is demonstrated by means of three‐dimensional hot rolling and of superplastic sheet forming.

Details

Engineering Computations, vol. 7 no. 1
Type: Research Article
ISSN: 0264-4401

1 – 10 of 55