Search results

1 – 4 of 4
Article
Publication date: 2 January 2018

V.V. Ravikumar and S. Kumaran

The purpose of this paper is to study the corrosion behaviour of Al-12Zn-3Mg-2.5Cu alloy by cast, precipitation hardening and non-isothermal step rolling cum cold/cryo rolling…

Abstract

Purpose

The purpose of this paper is to study the corrosion behaviour of Al-12Zn-3Mg-2.5Cu alloy by cast, precipitation hardening and non-isothermal step rolling cum cold/cryo rolling (−80 and −196°C) in 3.5 per cent NaCl solution.

Design/methodology/approach

Aluminium alloy with high alloying concentration (Zn: 12 per cent, Mg: 3 per cent, Cu: 2.5 per cent) was prepared by squeeze casting method with controlled process parameters. The cast alloy was solution treated at 450°C for 24 h and aged at 120°C with varying time intervals. Initially, the alloy also underwent non-isothermal step rolling from 6 mm to 3 mm at 400-100°C at the step of 100ºC with 15% reduction in thickness. Non-isothermal rolled alloy (3 mm thickness) was the starting material for further rolling at three different temperatures, such as room temperature, −80 and −190°C with 85 per cent reduction. Microstructural evolution during precipitation and thermo-mechanical processing was studied with the help of optical microscopy and electron microscopy. A potentio-dynamic polarization study was performed to evaluate the corrosion behaviour of Al-12Zn-3Mg-2.5Cu alloy processed in different conditions in 3.5 per cent NaCl solution.

Findings

There is a distinct evidence that the alloy exhibits varying corrosion resistance by changing its structural features. In fact, the alloy with ultra-fine grained structure exhibits good corrosion resistance than that of alloy in cast. This is attributed to a greater grain boundary region with high dislocation density, and plastic strain adversely affects the corrosion resistance.

Originality/value

The results obtained by this investigation help in understanding the effect of precipitation hardening and non-isothermal step rolling cum cold/cryo rolling (−80 and −196°C) on corrosion behaviour.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 August 2019

G. Yoganjaneyulu, Y. Phaneendra, V.V. Ravikumar and C. Sathiya Narayanan

The purpose of this paper is to investigate the void coalescence and corrosion behaviour of titanium Grade 4 sheets during single point incremental forming (SPIF) process with…

Abstract

Purpose

The purpose of this paper is to investigate the void coalescence and corrosion behaviour of titanium Grade 4 sheets during single point incremental forming (SPIF) process with various spindle rotational speeds. The development of corrosion pits in 3.5 (%) NaCl solution has also been studied during SPIF process.

Design/methodology/approach

In this current research work, the void coalescence analysis and corrosion behaviour of titanium Grade 4 specimens were studied. A potentio-dynamic polarization (PDP) study was conducted to investigate the corrosion behaviour of titanium Grade 4 processed samples with various spindle speeds in 3.5 (%) NaCl solution. The scanning electron microscope and transmission electron microscope analysis was carried out to study the fracture behaviour and corrosion morphology of processed samples.

Findings

The titanium Grade 4 sheets obtained better formability and corrosion resistance by increasing the CNC spindle rotational speeds. In fact that, the significant plastic deformation affects the corrosion rate with various spindle speeds were recorded.

Originality/value

The spindle rotational speeds and vertical step depths increases then the titanium Grade 4 sheets showed better formability, void coalescence and corrosion behaviour as the same is evidenced in forming limit diagram and PDP curves.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 August 2019

G. Yoganjaneyulu, V.V. Ravikumar and C. Sathiya Narayanan

The purpose of this paper is to investigate the strain distribution, stress-based fracture limit and corrosion behaviour of titanium Grade 2 sheets during single point incremental…

Abstract

Purpose

The purpose of this paper is to investigate the strain distribution, stress-based fracture limit and corrosion behaviour of titanium Grade 2 sheets during single point incremental forming (SPIF) process, with various computerized numerical control (CNC) spindle rotational speeds and step depths. The development of corrosion pits in 3.5 (%) NaCl solution has also been studied during the SPIF process.

Design/methodology/approach

A potentiodynamic polarization (PDP) study was performed to investigate the corrosion behaviour of titanium Grade 2 deformed samples, with various spindle rotational speeds in 3.5 (%) NaCl solution. The scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis was carried out to study the fracture behaviour, dislocation densities and corrosion morphology of deformed samples.

Findings

The titanium Grade 2 sheets exhibited better strain distribution, fracture limit and corrosion resistance by increasing the CNC spindle rotational speeds, tool diameters and vertical step depths (VSD). It was recorded that varying the spindle speed affected plastic deformation which in turn affected corrosion rate.

Research limitations/implications

In this study, poor corrosion rate was observed for the as-received condition, and better corrosion rate was achieved at maximum speed of 600 rpm and 0.6 mm of VSD in the deformed sheet. This indicates that corrosion rate improved with increase in the plastic deformation. The EDS analysis report of corroded surface revealed the composition to be mainly of titanium and oxides.

Practical implications

This study discusses the strain distribution, stress-based fracture limit and corrosion behaviour by using titanium Grade 2 sheets during SPIF process.

Social implications

This study is useful in the field of automobile and industrial applications.

Originality/value

With an increase in the spindle rotational speeds and VSD, the titanium Grade 2 sheets showed better strain distribution, fracture limit and corrosion behaviour; the same is evidenced in fracture limit curve and PDP curves.

Article
Publication date: 31 January 2020

Xiaobo Wang, Wen Zhan and Boyi Gui

The purpose of this paper is to develop a chrome-free and phosphorus-free chemical conversion coating with good corrosion resistance, a novel chemical conversion coating was…

Abstract

Purpose

The purpose of this paper is to develop a chrome-free and phosphorus-free chemical conversion coating with good corrosion resistance, a novel chemical conversion coating was prepared by adding cerium nitrate hexahydrate and salicylic acid in the treatment solution containing titanium/zirconium ions on 6061 aluminum alloy.

Design/methodology/approach

Compared with the AA6061 aluminum alloy matrix, the self-corrosion potential of the conversion coating is significantly positively shifted, the self-corrosion current density is greatly reduced and its corrosion resistance is significantly improved. Morphology and composition of the conversion coatings were observed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The microdomain structure of conversion coatings at different formation stages was analyzed by electron probe microanalyzer.

Findings

An optimized preparation technique of titanium–zirconium chemical conversion coating for AA6061 aluminum alloy is obtained: H2TiF6 4 mL/L, H2ZrF6 0.4 mL/L, salicylic acid 0.35 g/L, Ce(NO3)3·6H2O 0.14 g/L, reaction temperature 30°C, reaction time 120 s and pH 4.0.

Originality/value

The coating forms on the Al(Fe)Si intermetallic compound, and Ce3+ is preferentially adsorbed on the intermetallic compound. The hydrolysis of Ce3+ causes the local pH of the solution to decrease, which promotes matrix dissolution and charge migration. As the microanode/microcathode reaction occurs, the local pH of the solution increases, and Al2O3/ZrO2/TiO2 begins to deposit on the surface of the metal substrate.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 4 of 4