Search results

1 – 10 of 15
Article
Publication date: 21 November 2022

Nirmal K. Manna, Nirmalendu Biswas, Dipak Kumar Mandal, U.K. Sarkar, Hakan F. Öztop and Nidal Abu-Hamdeh

The study aims to assess the heater and cooler positional impacts systematically using four different quadrantal cavities filled with hybrid nanofluid, keeping the curved surface…

Abstract

Purpose

The study aims to assess the heater and cooler positional impacts systematically using four different quadrantal cavities filled with hybrid nanofluid, keeping the curved surface adiabatic under the orientated magnetic fields. Both heat transfer and entropy generation analyses are performed for a hybrid nanofluid flow in a quarter circular cavity considering different orientations of magnetic fields. The investigation is focused to assess the heater and cooler positional impacts systematically using four different quadrantal cavities (first to fourth quadrantal cavities), keeping the curved surface always adiabatic. The impacts of pertinent variables like Rayleigh number, Hartmann number and volumetric concentration of hybrid nanofluid on heat transfer characteristics are in consideration with the second law of thermodynamics. The analysis includes the thermal, viscous and magnetic aspects of entropy generation.

Design/methodology/approach

After validating against the experimental results, the present work explores numerically following the Galerkin weighted finite element technique. The solution is obtained through an iterative process satisfying the convergence limit of 10−8 and 10−10 for the maximum residuals and the mass defect, respectively.

Findings

It revealed that the mutual exchange of heater-cooler positions on the adjacent straight edges of the quadrant cavity does not have any impact on the flow direction. Although the magnitude of flow velocity enhances, the sidewall plays a decision-making role in the formation of a single circulation vortex. It also shows that thermal entropy production is the main cause behind thermodynamic irreversibility. The second or third quadrantal arrangement could have been opted as the best configuration of the heater-cooler position for achieving superior heat transfer. The Lorentz force plays a great role to moderate the heat transfer process. The maximum entropy generation is located, as expected, at the heating-cooling junction point.

Research limitations/implications

There are plenty of prospects for extension of the present research concept numerically or experimentally, adopting three-dimensional analysis, working fluids, boundary conditions, etc. In fact, the study could be carried out for unsteady or turbulent fluid flow.

Practical implications

As the position of the heated source and cold sink on the enclosure geometry can significantly alter the thermo-fluid phenomena, this kind of analysis is of utmost relevance for the further development of efficient heating/cooling arrangements and proper management of the devices subjected to magnetic field applications. This original contribution could be a potentially valuable source for future research and exploration pertaining to a thermal system or device, like heat exchangers, solar collectors, thermal storage, electronic cooling, food and drying technologies and others.

Originality/value

In the literature, an inadequate number of works have focused on a quadrantal cavity, mostly considering the first quadrant of the circle. However, during practical applications, it is possible that the cavity can take the shape of the other three quadrants too, and the corresponding knowledge on relative performance is still missing. Furthermore, the present investigation includes the existence of magnetic fields at various orientations. The impact analysis of this field-induced Lorentz force on the nanofluid thermal performance is another major contribution from the present work that would enrich the domain knowledge and could be useful for thermal system engineers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 January 2024

Md Motiur Rahaman, Nirmalendu Biswas, Apurba Kumar Santra and Nirmal K. Manna

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The…

Abstract

Purpose

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The cavity undergoes isothermal heating from the bottom, with variations in the positions of heated walls across the grooved channel. The aim is to assess the impact of heater positions on thermal performance and identify the most effective configuration.

Design/methodology/approach

Numerical solutions to the evolved transport equations are obtained using a finite volume method-based indigenous solver. The dimensionless parameters of Reynolds number (1 ≤ Re ≤ 500), Richardson number (0.1 ≤ Ri ≤ 100), Hartmann number (0 ≤ Ha ≤ 70) and magnetic field inclination angle (0° ≤ γ ≤ 180°) are considered. The solved variables generate both local and global variables after discretization using the semi-implicit method for pressure linked equations algorithm on nonuniform grids.

Findings

The study reveals that optimal heat transfer occurs when the heater is positioned at the right corner of the grooved cavity. Heat transfer augmentation ranges from 0.5% to 168.53% for Re = 50 to 300 compared to the bottom-heated case. The magnetic field’s orientation significantly influences the average heat transfer, initially rising and then declining with increasing inclination angle. Overall, this analysis underscores the effectiveness of heater positions in achieving superior thermal performance in a grooved channel cavity.

Research limitations/implications

This concept can be extended to explore enhanced thermal performance under various thermal boundary conditions, considering wall curvature effects, different geometry orientations and the presence of porous structures, either numerically or experimentally.

Practical implications

The findings are applicable across diverse fields, including biomedical systems, heat exchanging devices, electronic cooling systems, food processing, drying processes, crystallization, mixing processes and beyond.

Originality/value

This work provides a novel exploration of CuO-water nanofluid flow in mixed convection within a grooved channel cavity under the influence of an inclined magnetic field. The influence of different heater positions on thermomagnetic convection in such a cavity has not been extensively investigated before, contributing to the originality and value of this research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 December 2023

Aniket Halder, Arabdha Bhattacharya, Nirmalendu Biswas, Nirmal K. Manna and Dipak Kumar Mandal

The purpose of this study is to carry out a comprehensive analysis of magneto-hydrodynamics (MHD), nanofluidic flow dynamics and heat transfer as well as thermodynamic…

Abstract

Purpose

The purpose of this study is to carry out a comprehensive analysis of magneto-hydrodynamics (MHD), nanofluidic flow dynamics and heat transfer as well as thermodynamic irreversibility, within a novel butterfly-shaped cavity. Gaining a thorough understanding of these phenomena will help to facilitate the design and optimization of thermal systems with complex geometries under magnetic fields in diverse applications.

Design/methodology/approach

To achieve the objective, the finite element method is used to solve the governing equations of the problem. The effects of various controlling parameters such as butterfly-shaped triangle vertex angle (T), Rayleigh number (Ra), Hartmann number (Ha) and magnetic field inclination angle (γ ) on the hydrothermal performance are analyzed meticulously. By investigating the effects of these parameters, the authors contribute to the existing knowledge by shedding light on their influence on heat and fluid transport within butterfly-shaped cavities.

Findings

The major findings of this study reveal that the geometrical shape significantly alters fluid motion, heat transfer and irreversibility production. Maximum heat transfer, as well as entropy generation, occurs when the Rayleigh number reaches its maximum, the Hartmann number is minimized and the angle of the magnetic field is set to 30° or 150°, while the butterfly wings angle or vertex angle is kept at a maximum of 120°. The intensity of the magnetic field significantly controls the heat flow dynamics, with higher magnetic field strength causing a reduction in the flow strength as well as heat transfer. This configuration optimizes the heat transfer characteristics in the system.

Research limitations/implications

Further research can be expanded on this study by examining thermal performance under different curvature effects, orientations, boundary conditions and additional factors. This can be accomplished through numerical simulations or experimental investigations under various multiphysical scenarios.

Practical implications

The geometric configurations explored in this research have practical applications in various engineering fields, including heat exchangers, crystallization processes, microelectronic devices, energy storage systems, mixing processes, food processing, air-conditioning, filtration and more.

Originality/value

This study brings value by exploring a novel geometric configuration comprising the nanofluidic flow, and MHD effect, providing insights and potential innovations in the field of thermal fluid dynamics. The findings contribute a lot toward maximizing thermal performance in diverse fields of applications. The comparison of different hydrothermal behavior and thermodynamic entropy production under the varying geometric configuration adds novelty to this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 February 2021

Nirmalendu Biswas, Nirmal K. Manna, Dipak Kumar Mandal and Rama Subba Reddy Gorla

The purpose of this study is to address magnetohydrodynamic (MHD) bioconvection caused by the swimming of oxytactic microorganisms in a linearly heated square cavity filled with…

Abstract

Purpose

The purpose of this study is to address magnetohydrodynamic (MHD) bioconvection caused by the swimming of oxytactic microorganisms in a linearly heated square cavity filled with porous media and Cu–water nanofluid. The effects of different multiphysical aspects are demonstrated using local distributions as well as global quantities for fluid flow, temperature, oxygen concentration and microorganisms population.

Design/methodology/approach

The coupled transport equations are converted into the nondimensional partial differential equations, which are solved numerically using a finite volume-based computing code. The flow of Cu–water nanofluid through the pores of porous media is formulated following the Brinkman–Forchheimer–Darcy model. The swimming of oxytactic microorganisms is handled following a continuum model.

Findings

The analysis of transport phenomena of bioconvection is performed in a linearly heated porous enclosure containing Cu–water nanofluid and oxytactic microorganisms under the influence of magnetic fields. The application of such a system could have potential impacts in diverse fields of engineering and science. The results show that the flow and temperature distribution along with the isoconcentrations of oxygen and microorganisms is markedly affected by the involved governing parameters.

Research limitations/implications

Similar study of bioconvection could be extended further considering thermal radiation, chemical attraction, gravity and light.

Practical implications

The outcomes of this investigation could be used in diverse fields of multiphysical applications, such as in food industries, chemical processing equipment, fuel cell technology and enhanced oil recovery.

Originality/value

The insight of the linear heating profile reveals a special attribute of simultaneous heating and cooling zones along the heated side. With such an interesting feature, the MHD bioconvection of oxytactic microorganisms in nanofluid-filled porous substance is not reported so far.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2023

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square…

Abstract

Purpose

The purpose of this study is to investigate the influence of enclosure shape on magnetohydrodynamic (MHD) nanofluidic flow, heat transfer and irreversibility in square, trapezoidal and triangular thermal systems under fluid volume constraints, with the aim of optimizing thermal behavior in diverse applications.

Design/methodology/approach

The study uses numerical simulations based on a finite element-based technique to analyze the effects of the Rayleigh number (Ra), Hartmann number (Ha), magnetic field orientation (γ) and nanoparticle concentration (ζ) on heat transfer characteristics and thermodynamic entropy production.

Findings

The key findings reveal that the geometrical design significantly influences fluid velocity, heat transfer and irreversibility. Trapezoidal thermal systems outperform square systems, while triangular systems achieve optimal enhancement. Nanoparticle concentration enhances heat transfer and flow strength at higher Rayleigh numbers. The magnetic field intensity has a significant impact on fluid flow and heat transport in natural convection, with higher Hartmann numbers resulting in reduced flow strength and heat transfer. The study also highlights the influence of various parameters on thermodynamic entropy production.

Research limitations/implications

Further research can explore additional geometries, parameters and boundary conditions to expand the understanding of enclosure shape effects on MHD nanofluidic flow and heat transfer. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This study provides valuable insights into the impact of enclosure shape on heat transfer performance in MHD nanofluid flow systems. The findings contribute to the optimization of thermal behavior in applications such as electronics cooling and energy systems. The comparison of different enclosure shapes and the analysis of thermodynamic entropy production add novelty to the study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Nirmalendu Biswas, Dipak Kumar Mandal, Nirmal K. Manna, Rama S.R. Gorla and Ali J. Chamkha

This study aims to investigate the impact of different heater geometries (flat, rectangular, semi-elliptical and triangular) on hybrid nanofluidic (Cu–Al2O3–H2O) convection in…

Abstract

Purpose

This study aims to investigate the impact of different heater geometries (flat, rectangular, semi-elliptical and triangular) on hybrid nanofluidic (Cu–Al2O3–H2O) convection in novel umbrella-shaped porous thermal systems. The system is top-cooled, and the identical heater surfaces are provided centrally at the bottom to identify the most enhanced configuration.

Design/methodology/approach

The thermal-fluid flow analysis is performed using a finite volume-based indigenous code, solving the nonlinear coupled transport equations with the Darcy number (10–5 ≤ Da ≤ 10–1), modified Rayleigh number (10 ≤ Ram ≤ 104) and Hartmann number (0 ≤ Ha ≤ 70) as the dimensionless operating parameters. The semi-implicit method for pressure linked equations algorithm is used to solve the discretized transport equations over staggered nonuniform meshes.

Findings

The study demonstrates that altering the heater surface geometry improves heat transfer by up to 224% compared with a flat surface configuration. The triangular-shaped heating surface is the most effective in enhancing both heat transfer and flow strength. In general, flow strength and heat transfer increase with rising Ram and decrease with increasing Da and Ha. The study also proposes a mathematical correlation to predict thermal characteristics by integrating all geometric and flow control variables.

Research limitations/implications

The present concept can be extended to further explore thermal performance with different curvature effects, orientations, boundary conditions, etc., numerically or experimentally.

Practical implications

The present geometry configurations can be applied in various engineering applications such as heat exchangers, crystallization, micro-electronic devices, energy storage systems, mixing processes, food processing and different biomedical systems (blood flow control, cancer treatment, medical equipment, targeted drug delivery, etc.).

Originality/value

This investigation contributes by exploring the effect of various geometric shapes of the heated bottom on the hydromagnetic convection of Cu–Al2O3–H2O hybrid nanofluid flow in a complex umbrella-shaped porous thermal system involving curved surfaces and multiphysical conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 August 2022

Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Rama Subba Reddy Gorla and Ali J. Chamkha

This study aims to numerically examine the influence of various geometric parameters of a novel W-shaped porous cavity undergoing hybrid nanofluid-based magnetohydrodynamic mixed…

278

Abstract

Purpose

This study aims to numerically examine the influence of various geometric parameters of a novel W-shaped porous cavity undergoing hybrid nanofluid-based magnetohydrodynamic mixed convection. The W-shaped cavity is modified from the classical trapezoidal cavity by constructing a triangular shape at its bottom. This cavity is isothermally active at the bottom, with different numbers and heights of the triangular peak (or undulation). The heated hybrid nanofluid (Cu–Al2O3–H2O) flow is cooled through the translating top wall. Inclined sidewalls are thermally insulated. To compare the impacts of change in geometric parameters, a square cavity under similar boundary conditions is also simulated. This study is carried out systematically addressing the various influences from a range of parameters like side angles (γ), number (m) and height (λ) of the bottom undulation, Reynolds number (Re), Richardson number (Ri), Darcy number (Da), Hartmann number (Ha), hybrid nanoparticles volume fraction (φ) on the overall thermal performance of the cavity.

Design/methodology/approach

Applying the finite volume approach, the transport equations involving multiphysical conditions like porous substance, hybrid nanofluid, magnetic field and shearing force are solved numerically by using a written FORTRAN-based code following the SIMPLE algorithm. The algebraic equations are solved over all the control volumes in an iterative process using the alternate direction implicit scheme and the tri-diagonal matrix algorithm. The converged solution of the iterative process is obtained when the relative error levels satisfy the convergence criterion of 10–8 and 10–10 for the maximum residuals and the mass defect, respectively.

Findings

It is revealed that an increase in the bottom undulation height always improves the thermal energy transfer despite the reduction of fluid volume. Thermal energy transfer significantly depends on the heating and cooling surface lengths, fluid volume in the cavity and the magnitude of the bottom undulation height of the W-shaped cavity. With the increase in bottom undulation height, effective heating length increases by ∼28%, which leads to a ∼15% reduction in the effective volume of the working fluid and a gain in heat transfer by ∼56.48%. In general, the overall thermal energy transport is improved by increasing Re, Ri and Da; whereas it is suppressed by increasing Ha.

Research limitations/implications

There are many opportunities for future research experimentally or numerically, considering different curvature effects, orientations of the geometry, working fluids, boundary conditions, etc. Furthermore, this study could be extended by considering unsteady flow or turbulent flow.

Practical implications

In many modern systems/processes pertaining to materials processing, continuous casting, food processing, chemical reactors, biomedical applications, etc. fine control in the transport process is a major concern. The findings of this analysis can effectively be useful for other applications for getting more control features in terms of achieving the operational objectives. The approach of the system analysis (considering geometrical size parameters to delve into the underlying transport physics) and the obtained simulated results presented in the work can usefully be applicable to similar thermal systems/devices such as materials processing, thermal mixing, chemical reactors, heat exchangers, etc.

Originality/value

From the well-documented and vast pool of literature survey, it is understood that there exists no such investigation on the considered geometry and study. This study contributes a lot to understanding magnetic field moderated thermofluid flow of a hybrid nanofluid in a porous medium filled W-shaped cavity, in consideration of different geometrical shape parameters (undulation peak numbers at bottom wall, peak heights, side angles and heating and cooling length). Findings brought by this study provide great insights into the design and operation under various ranges of multiphysical thermofluid-flow processing phenomena.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 July 2021

Nirmalendu Biswas, Nirmal Kumar Manna, Dipak Kumar Mandal and Rama Subba Reddy Gorla

This study aims to investigate thermo-bioconvection of oxytactic microorganisms occurring in a nanofluid-saturated porous lid-driven cavity in the presence of the magnetic field…

Abstract

Purpose

This study aims to investigate thermo-bioconvection of oxytactic microorganisms occurring in a nanofluid-saturated porous lid-driven cavity in the presence of the magnetic field. The heating is provided through a bell-shaped curved bottom wall heated isothermally. The effects of the peak height of the curved bottom wall, bioconvection Rayleigh number (Rb), Darcy number (Da), Hartmann number (Ha), Peclet number (Pe), Lewis number (Le) and Grashof number (Gr) on the flow structure, temperature and the iso-concentrations of oxygen and microorganisms are examined and explained systematically. The local and global, characteristics of heat transfer and oxygen concentration, are estimated through the Nusselt number (Nu) and Sherwood number (Sh), respectively.

Design/methodology/approach

The governing equations of continuity, momentum, energy and additionally consisting of species transport equations for oxygen concentration and population density of microorganisms, are discretized by the finite volume method. The evolved linearized algebraic equations are solved iteratively through the alternate direction implicit scheme and the tri-diagonal matrix algorithm. The computation domain has meshed in non-uniform staggered grids. The entire computations are carried out through an in-house developed code written in FORTRAN following the SIMPLE algorithm. The third-order upwind and second-order central difference schemes are used for handling the advection and diffusion terms, respectively. The convergence criterion for the iterative process of achieving the final solution is set as 10–8 and 10–10, respectively, for the maximum residuals and the mass defect.

Findings

The results show that the flow and temperature distribution along with the iso-concentrations of oxygen and microorganisms are markedly affected by the curvature of the bottom wall. A secondary circulation is developed in the cavity that changes the flow physics significantly. The Nu increases with the peak height of the curved bottom wall and Da; however, it decreases with Ha and Rb. The Sh increases with Da but decreases with Ha and the peak height of the curved wall.

Research limitations/implications

A similar study of bioconvection could be extended further considering thermal radiation, chemical attraction, gravity, light, etc.

Practical implications

The outcomes of this investigation could be used in diverse fields of multi-physical applications such as in food industries, chemical processing equipment, fuel cell technology and enhanced oil recovery.

Originality/value

The insights of bioconvection of oxytactic microorganisms using a curved bottom surface along with other physical issues such as nanofluid, porous substance and magnetic field are addressed systematically and thoroughly.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 August 2021

Nirmalendu Biswas, Dipak Kumar Mandal, Nirmal K. Manna, Rama Subba Reddy Gorla and Ali J. Chamkha

The aims of this study is to numerically investigate the thermal phenomena during magnetohydrodynamic (MHD) free convection in an oblique enclosure filled with porous media…

Abstract

Purpose

The aims of this study is to numerically investigate the thermal phenomena during magnetohydrodynamic (MHD) free convection in an oblique enclosure filled with porous media saturated with Cu–Al2O3/water hybrid nanofluid and heated at the left wavy wall. The thermophysical phenomena are explored thoroughly by varying the amplitude (λ) and undulation (n) of the wavy wall and the inclination of the enclosure (γ) along with other pertinent physical parameters. Darcy–Rayleigh number (Ram), Darcy number (Da), Hartmann number (Ha) and nanoparticle volumetric fraction (ϕ). The effect of all parameters has been analyzed and represented by using heatlines, isotherms, streamlines, average Nusselt number and local Nusselt number.

Design/methodology/approach

The finite volume method is used to work out the transport equations coupled with velocity, pressure and temperature subjected to non-uniform staggered grid structure after grid-sensitivity analysis by an indigenous computing code and the semi-implicit method for pressure linked equations (SIMPLE) algorithm. The solution process is initiated following an iterative approach through the alternate direction implicit sweep technique and the tridiagonal matrix algorithm (TDMA) algorithm. The iterative process is continued until successive minimization of the residuals (<1e-8) for the governing equations.

Findings

This study reveals that the increase in the heating surface area does not always favor heat transfer. An increase in the undulation amplitude enhances the heat transfer; however, there is an optimum value of undulation of the wavy wall for this. The heat transfer enhancement because of the wall curvature is revealed at higher Ram, lower Da and Ha and lower volume fraction of nanoparticles. In general, this augmentation is optimum for four undulations of the wavy wall with an amplitude of λ = 0.3. The heat transfer enhancement can be more at the cavity inclination   γ = 45°.

Research limitations/implications

The technique of this investigation could be used in other multiphysical areas involving partial porous layers, conducting objects, different heating conditions, wall motion, etc.

Practical implications

This study is to address MHD thermo-fluid phenomena of Cu–Al2O3/water-based hybrid nanofluid flow through a non-Darcian porous wavy cavity at different inclinations. The amplitude and number of undulations of the wavy wall, permeability of the porous medium, magnetic field intensity, nanoparticle volumetric fraction and inclinations of the enclosure play a significant role in the heat transfer process. This analysis and the findings of this work can be useful for the design and control of similar thermal systems/devices.

Originality/value

Many researchers have examined the problem of buoyancy-induced free convection in a wavy-porous cavity packed with regular fluids or nanofluids. However, the effect of magnetic fields along with the amplitude (λ) at different undulations (n) of the heated wavy wall of an inclined enclosure is not attended so far to understand the transport mechanisms. Most often, the evolutions of the thermo-fluid phenomena in such complex geometries invoking different multiphysics are very intricate. Numerical implementations for simulations and subsequent post-processing of the results are also challenging.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 15