Search results

1 – 10 of 26
Article
Publication date: 24 September 2024

Yitian Chi, Narayanan Murali and Xiaochun Li

High-performance wrought aluminum alloys, particularly AA6061, are pivotal in industries like automotive and aerospace due to their exceptional strength and good response to heat…

Abstract

Purpose

High-performance wrought aluminum alloys, particularly AA6061, are pivotal in industries like automotive and aerospace due to their exceptional strength and good response to heat treatments. Investment casting offers precision manufacturing for these alloys, because casting AA6061 poses challenges like hot cracking and severe shrinkage during solidification. This study aims to address these issues, enabling crack-free investment casting of AA6061, thereby unlocking the full potential of investment casting for high-performance aluminum alloy components.

Design/methodology/approach

Nanotechnology is used to enhance the investment casting process, incorporating a small volume fraction of nanoparticles into the alloy melt. The focus is on widely used aluminum alloy 6061, utilizing rapid investment casting (RIC) for both pure AA6061 and nanotechnology-enhanced AA6061. Microstructural characterization involved X-ray diffraction, optical microscopy, scanning electron microscopy, differential scanning calorimetry and energy dispersive X-ray spectroscopy. Mechanical properties were evaluated through microhardness and tensile testing.

Findings

The study reveals the success of nanotechnology-enabled investment casting in traditionally challenging wrought aluminum alloys like AA6061. Achieving crack-free casting, enhanced grain morphology and superior mechanical properties, because the nanoparticles control grain sizes and phase growth, overcoming traditional challenges associated with low cooling rates. This breakthrough underscores nanotechnology's transformative impact on the mechanical integrity and casting quality of high-performance aluminum alloys.

Originality/value

This research contributes originality and value by successfully addressing the struggles in investment casting AA6061. The novel nano-treating approach overcomes solidification defects, showcasing the potential of integrating nanotechnology into rapid investment casting. By mitigating challenges in casting high-performance aluminum alloys, this study paves the way for advancements in manufacturing crack-free, high-quality aluminum alloy components, emphasizing nanotechnology's transformative role in precision casting.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 September 2024

Dmitry Leonidovich Kovalenko, Vy Uong Van, Van Phuc Mac, Thien Vuong Nguyen, Lan Pham Thi, Tuan Anh Nguyen, Vladimir Evgenevich Gaishun, Vasili Vasilievich Vaskevich and Dai Lam Tran

This paper aims to explore how graphene can improve the mechanical and anti-corrosion properties of TiO2-SiO2 sol-gel coating. This sol-gel coating has been prepared on aluminum…

Abstract

Purpose

This paper aims to explore how graphene can improve the mechanical and anti-corrosion properties of TiO2-SiO2 sol-gel coating. This sol-gel coating has been prepared on aluminum alloy substrate using graphene as both nano-filler and corrosion inhibitor.

Design/methodology/approach

To examine the effect of graphene on mechanical properties of sol-gel coating, the abrasion resistance, adhesion strength and scratch resistance of coating have been evaluated. To reveal the effect of graphene on the anti-corrosion property of coating for aluminum alloy, the electrochemical impedance spectroscopy (EIS) has been conducted in 3.5 Wt.% NaCl medium.

Findings

Scanning electron microscopy images indicate that graphene nanoplatelets (GNPs) have been homogeneously dispersed into the sol-gel coating matrices (at the contents from 0.1 to 0.5 Wt.%). Mechanical tests of coatings indicate that the graphene content of 0.5 Wt.% provides highest values of adhesion strength (1.48 MPa), scratch resistance (850 N) and abrasion strength (812 L./mil.) for the sol-gel coating. The EIS data show that the higher content of GNPs improve both R1 (coating) and R2 (coating/Al interface) resistances. In addition to enhancing the coating barrier performance (graphene acts as nanofiller/nano-reinforcer for coating matrix), other mechanism can be at work to account for the role of the graphene inhibitor in improving the anticorrosive performance at the coating/Al interface.

Originality/value

Application of graphene-based sol-gel coating for protection of aluminum and its alloy is very promising.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 July 2024

Min Zhao, Wei He, Xiuyu He, Liang Zhang and Hongxue Zhao

Bionic flapping-wing aerial vehicles (FWAVs) mimic natural flyers to generate the lift and thrust, such as birds, bats and insects. As an important component of the FWAVs, the…

Abstract

Purpose

Bionic flapping-wing aerial vehicles (FWAVs) mimic natural flyers to generate the lift and thrust, such as birds, bats and insects. As an important component of the FWAVs, the flapping wings are crucial for the flight performance. The aim of this paper is to study the effects of different wings on aerodynamic performance.

Design/methodology/approach

Inspired by the wings structure of birds, the authors design four cambered wings to analyze the effect of airfoils on the FWAVs aerodynamic performance. The authors design the motor-driven mechanism of flapping wings, and realize the control of flapping frequency. Combined with the wind tunnel equipment, the authors build the FWAVs force test platform to test the static and dynamic aerodynamic performance of different flapping wings under the state variables of flapping frequency, wind speed and inclined angle.

Findings

The results show that the aerodynamic performance of flapping wing with a camber of 20 mm is the best. Compared with flat wing, the average lift can be improved by 59.5%.

Originality/value

Different from the traditional flat wing design of FWAVs, different cambered flapping wings are given in this paper. The influence of airfoils on aerodynamic performance of FWAVs is analyzed and the optimal flapping wing is obtained.

Details

Robotic Intelligence and Automation, vol. 44 no. 5
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 21 June 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles D’Souza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs…

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the specific wear rate (SWR) of alkaline treated bamboo and flax fiber-reinforced composites (FRCs) under dry sliding condition by using a robust statistical method.

Design/methodology/approach

In this research, the epoxy/bamboo and epoxy/flax composites filled with 0–8 Wt.% TiO2 particles have been fabricated using simple hand layup techniques, and wear testing of the composite was done in accordance with the ASTM G99-05 standard. The Taguchi design of experiments (DOE) was used to conduct a statistical analysis of experimental wear results. An analysis of variance (ANOVA) was conducted to identify significant control factors affecting SWR under dry sliding conditions. Taguchi prediction model is also developed to verify the correlation between the test parameters and performance output.

Findings

The research study reveals that TiO2 filler particles in the epoxy/bamboo and epoxy/flax composite will improve the tribological properties of the developed composites. Statistical analysis of SWR concludes that normal load is the most influencing factor, followed by sliding distance, Wt.% TiO2 filler and sliding velocity. ANOVA concludes that normal load has the maximum effect of 31.92% and 35.77% and Wt.% of TiO2 filler has the effect of 17.33% and 16.98%, respectively, on the SWR of bamboo and flax FRCs. A fairly good agreement between the Taguchi predictive model and experimental results is obtained.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo/flax fibers to develop a novel hybrid composite material. TiO2 micro and nanoparticles are promising filler materials, it helps to enhance the mechanical and tribological properties of the epoxy composites. Taguchi DOE and ANOVA used for statistical analysis serve as guidelines for academicians and practitioners on how to best optimize the control variable with particular reference to natural FRCs.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 September 2024

Madiha Ajmal, Rashid Mehmood, Noreen Sher Akbar and Taseer Muhammad

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a…

Abstract

Purpose

This study aims to focuse on the flow behavior of a specific nanofluid composed of blood-based iron oxide nanoparticles, combined with motile gyrotactic microorganisms, in a ciliated channel with electroosmosis.

Design/methodology/approach

This study applies a powerful mathematical model to examine the combined impacts of bio convection and electrokinetic forces on nanofluid flow. The presence of cilia, which are described as wave-like motions on the channel walls, promotes fluid propulsion, which improves mixing and mass transport. The velocity and dispersion of nanoparticles and microbes are modified by the inclusion of electroosmosis, which is stimulated by an applied electric field. This adds a significant level of complexity.

Findings

To ascertain their impact on flow characteristics, important factors such as bio convection Rayleigh number, Grashoff number, Peclet number and Lewis number are varied. The results demonstrate that while the gyrotactic activity of microorganisms contributes to the stability and homogeneity of the nanofluid distribution, electroosmotic forces significantly enhance fluid mixing and nanoparticle dispersion. This thorough study clarifies how to take advantage of electroosmosis and bio convection in ciliated micro channels to optimize nanofluid-based biomedical applications, such as targeted drug administration and improved diagnostic processes.

Originality/value

First paper discussed “Numerical Computation of Cilia Transport of Prandtl Nanofluid (Blood-Fe3O4) Enhancing Convective Heat Transfer along Micro Organisms under Electroosmotic effects in Wavy Capillaries”.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 September 2024

Liberato Venant Haule

A review of sustainability challenges of flame retardants (FRs) for textiles has been conducted. Specifically, the purpose of this paper is to identify and recommend solutions to…

Abstract

Purpose

A review of sustainability challenges of flame retardants (FRs) for textiles has been conducted. Specifically, the purpose of this paper is to identify and recommend solutions to sustainability challenges emanating from the raw material, processing technology and performance of the FRs used for textiles.

Design/methodology/approach

The approach used in preparing this paper was based on the review of various scholarly databases about the subject matter. The review approach is designed to inform the readers about the sustainability challenges of FRs for textiles. The science of burning and FRs for synthetic and cellulosic fibres were reviewed. Both synthetic and natural biodegradable FRs for textiles has been identified. The obtained literature was then synthesised to get information about sustainable challenges of non-halogenated FRs both synthetic and natural biodegradable. Finally, possible approaches for mitigating the identified challenges have been recommended.

Findings

The sustainability challenges of the FRs in terms of raw material, processing, affordability and performance have been identified. Synthetic FRs suffer from sustainability challenges in terms of raw materials, processing and non-renewability. Despite the environmental friendliness and sustainability in terms of being renewability, processability and biodegradability, natural biodegradable FRs have poor performance compared to synthetic ones. Moreover, natural biodegradable FRs depend on geographical condition and lack economic variability data. Potentially, the challenges of FRs can be mitigated through eco-friendly synthesis, chemical modification and sustainable methods of applications. Because of its renewability and environmental friendliness, biodegradable FRs have a potential to becoming sustainable if researched more.

Originality/value

In this review, a collection of literature about sustainability challenges of FRs and the approaches to overcome the challenges has been provided. The collected information was analysed and synthesised to bring understanding of the science of burning, types and application of FRs for textiles and biodegradable FRs. Sustainability challenges have been identified, and mitigation approaches are provided.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 21 June 2023

Mohamed El Boukhari, Ossama Merroun, Chadi Maalouf, Fabien Bogard and Benaissa Kissi

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for…

Abstract

Purpose

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for natural sand. Two types of OPA were tested by replacing an equivalent amount of natural sand. The first type was OPA mixed with olive mill wastewater (OMW), and the second type was OPA not mixed with OMW. For each type, two series of concrete were produced using OPA in both dry and saturated states. The percentage of partial substitution of natural sand by OPA varied from 0% to 15%.

Design/methodology/approach

The addition of OPA leads to a reduction in the dry density of hardened concrete, causing a 5.69% decrease in density when compared to the reference concrete. After 28 days, ultrasonic pulse velocity tests indicated that the resulting material is of good quality, with a velocity of 4.45 km/s. To understand the mechanism of resistance development, microstructural analysis was conducted to observe the arrangement of OPA and calcium silicate hydrates within the cementitious matrix. The analysis revealed that there is a low level of adhesion between the cement matrix and OPA at interfacial transition zone level, which was subsequently validated by further microstructural analysis.

Findings

The laboratory mechanical tests indicated that the OPCD_OPW (5) sample, containing 5% of OPA, in a dry state and mixed with OMW, demonstrated the best mechanical performance compared to the reference concrete. After 28 days of curing, this sample exhibited a compressive strength (Rc) of 25 MPa. Furthermore, it demonstrated a tensile strength of 4.61 MPa and a dynamic modulus of elasticity of 44.39 GPa, with rebound values of 27 MPa. The slump of the specimens ranged from 5 cm to 9 cm, falling within the acceptable range of consistency (Class S2). Based on these findings, the OPCD_OPW (5) formulation is considered optimal for use in concrete production.

Originality/value

This research paper provides a valuable contribution to the management of OPA and OMW (OPA_OMW) generated from the olive processing industry, which is known to have significant negative environmental impacts. The paper presents an intriguing approach to recycling these materials for use in civil engineering applications.

Article
Publication date: 17 September 2024

Iván Manuel De la Vega Hernández, Juan Díaz Amorin and Rodolfo Fernández-Gomez

The purpose of this study focused on a global longitudinal bibliometric mapping of research in the field of health biotechnology between 1990 and 2023 to determine who is leading…

Abstract

Purpose

The purpose of this study focused on a global longitudinal bibliometric mapping of research in the field of health biotechnology between 1990 and 2023 to determine who is leading this field of knowledge and to estimate the sub-disciplines that are emerging and project those that will prevail in the future.

Design/methodology/approach

The study identified the most relevant countries, institutions and researchers, as well as the type of scientific collaborations. The applied steps applied in the study were the following: identification and selection of keyword terms by a panel of experts; design and application of an algorithm to identify these selected keywords in titles, abstracts and keywords using Web of Science terms to contrast them; performance of JCR data processing during 2023 using R, Python and VOSviewer.

Findings

Among the most relevant conclusions of the study are the following exponential growth has been observed in the study period; new branches of knowledge have emerged in which the subjects have been acquiring their own autonomous capabilities; and R&D in this field is still concentrated in a small group of core countries, and the trend is for it to remain so due to the capacity needs required.

Originality/value

This contribution seeks to systematize the existing scientific knowledge in the field of biotechnology, specifically in the area of health, using the technique of scientific mapping based on a logical model of indicators that aims to determine potential thematic ramifications.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 13 September 2024

A.M. Obalalu, E.O. Fatunmbi, J.K. Madhukesh, S.H.A.M. Shah, Umair Khan, Anuar Ishak and Taseer Muhammad

Recent advancements in technology have led to the exploration of solar-based thermal radiation and nanotechnology in the field of fluid dynamics. Solar energy is captured through…

Abstract

Purpose

Recent advancements in technology have led to the exploration of solar-based thermal radiation and nanotechnology in the field of fluid dynamics. Solar energy is captured through sunlight absorption, acting as the primary source of heat. Various solar technologies, such as solar water heating and photovoltaic cells, rely on solar energy for heat generation. This study focuses on investigating heat transfer mechanisms by utilizing a hybrid nanofluid within a parabolic trough solar collector (PTSC) to advance research in solar ship technology. The model incorporates multiple effects that are detailed in the formulation.

Design/methodology/approach

The mathematical model is transformed using suitable similarity transformations into a system of higher-order nonlinear differential equations. The model was solved by implementing a numerical procedure based on the Wavelets and Chebyshev wavelet method for simulating the outcome.

Findings

The velocity profile is reduced by Deborah's number and velocity slip parameter. The Ag-EG nanoparticles mixture demonstrates less smooth fluid flow compared to the significantly smoother fluid flow of the Ag-Fe3O4/EG hybrid nanofluids (HNFs). Additionally, the Ag-Ethylene Glycol nanofluids (NFs) exhibit higher radiative performance compared to the Ag-Fe3O4/Ethylene Glycol hybrid nanofluids (HNFs).

Practical implications

Additionally, the Oldroyd-B hybrid nanofluid demonstrates improved thermal conductivity compared to traditional fluids, making it suitable for use in cooling systems and energy applications in the maritime industry.

Originality/value

The originality of the study lies in the exploration of the thermal transport enhancement in sun-powered energy ships through the incorporation of silver-magnetite hybrid nanoparticles within the heat transfer fluid circulating in parabolic trough solar collectors. This particular aspect has not been thoroughly researched previously. The findings have been validated and provide a highly positive comparison with the research papers.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 July 2024

Xinran Yang, Junhui Du, Hongshuo Chen, Chuanjin Cui, Haibin Liu and Xuechao Zhang

Field-effect transistor (FET) has excellent electronic properties and inherent signal amplification, and with the development of nanomaterials technology, FET biosensors with…

Abstract

Purpose

Field-effect transistor (FET) has excellent electronic properties and inherent signal amplification, and with the development of nanomaterials technology, FET biosensors with nanomaterials as channels play an important role in the field of heavy metal ion detection. This paper aims to review the research progress of silicon nanowire, graphene and carbon nanotube field-effect tube biosensors for heavy metal ion detection, so as to provide technical support and practical experience for the application and promotion of FET.

Design/methodology/approach

The article introduces the structure and principle of three kinds of FET with three kinds of nanomaterials, namely, silicon nanowires, graphene and carbon nanotubes, as the channels, and lists examples of the detection of common heavy metal ions by the three kinds of FET sensors in recent years. The article focuses on the advantages and disadvantages of the three sensors, puts forward measures to improve the performance of the FET and looks forward to its future development direction.

Findings

Compared with conventional instrumental analytical methods, FETs prepared using nanomaterials as channels have the advantages of fast response speed, high sensitivity and good selectivity, among which the diversified processing methods of graphene, the multi-heavy metal ions detection of silicon nanowires and the very low detection limit and wider detection range of carbon nanotubes have made them one of the most promising detection tools in the field of heavy metal ions detection. Of course, through in-depth analysis, this type of sensor has certain limitations, such as high cost and strict process requirements, which are yet to be solved.

Originality/value

This paper elaborates on the detection principle and classification of field-effect tube, investigates and researches the application status of three kinds of FET biosensors in the detection of common heavy metal ions. By comparing the advantages and disadvantages of each of the three sensors in practical applications, the paper focuses on the feasibility of improvement measures, looks forward to the development trend in the field of heavy metal detection and ultimately promotes the application of field-effect tube development technology to continue to progress, so that its performance continues to improve and the application field is constantly expanding.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 26