Search results

1 – 10 of over 12000
Article
Publication date: 19 December 2023

Waqar Khan Usafzai, Emad H. Aly and Ioan Pop

This paper aims to study a non-Newtonian micropolar fluid flow over a bidirectional flexible surface for multiple exact solutions of momentum boundary layer and thermal transport…

Abstract

Purpose

This paper aims to study a non-Newtonian micropolar fluid flow over a bidirectional flexible surface for multiple exact solutions of momentum boundary layer and thermal transport phenomenon subject to wall mass flux, second-order slip and thermal jump conditions.

Design/methodology/approach

The coupled equations are transformed into ordinary differential equations using similarity variables. Analytical and numerical techniques are used to solve the coupled equations for single, dual or multiple solutions.

Findings

The results show that the stretching flow, shrinking flow, the wall drag, thermal profile and temperature gradient manifest large changes when treated for special effects of the standard parameters. The role of critical numbers is definitive in locating the domains for the existence of exact solutions. The nondimensional parameters, such as mass transfer parameter, bidirectional moving parameter, plate deformation strength parameter, velocity slips, material parameter, thermal jump and Prandtl number, are considered, and their physical effects are presented graphically. The presence of governing parameters exhibits special effects on the flow, microrotation and temperature distributions, and various exact solutions are obtained for the special parametric cases.

Originality/value

The originality and value of this work lie in its exploration of non-Newtonian micropolar fluid flow over a bidirectional flexible surface, highlighting the multiple exact solutions for momentum boundary layers and thermal transport under various physical conditions. The study provides insights into the effects of key parameters on flow and thermal behavior, contributing to the understanding of complex fluid dynamics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 July 2013

Yasir Khan, Moka Shekhu and C. Sulochana

The purpose of this paper is to propose a mathematical model for dispersion and diffusion of chemically reactive primary pollutants emitted from an elevated line sources into a…

Abstract

Purpose

The purpose of this paper is to propose a mathematical model for dispersion and diffusion of chemically reactive primary pollutants emitted from an elevated line sources into a stable atmospheric boundary layer with generalized wind velocity of quadratic function of vertical height z.

Design/methodology/approach

The governing partial differential equations are converted into the two‐dimensional time dependent partial differential equation by suitable choice of meteorological parameters and non‐dimensional variables, which is solved by the multiple inverse Laplace transform through Green's Function technique.

Findings

The three different types’ sources, viz. continuous, an instantaneous and step‐function type sources are studied. The pollutants considered are chemically reactive primary pollutants emitted from the above sources. In many previous works, solutions are obtained through numerical technique or numerical inversion of the Laplace transform; but here, an analytical method is carried out to find the exact solution through multiple inversion of Laplace transform, which yields an effective and accurate solution.

Originality/value

The paper describes how the authors obtained exact solutions for the elevated line sources into a stable atmospheric boundary layer arising in the chemically reactive primary pollutants model by inverse Laplace transform through Green's Function technique. The graphical results show that this method is very accurate. The gaseous pollutants converted into particulate matter and settled on surface terrain are also considered in this theoretical model.

Article
Publication date: 28 November 2023

Waqar Khan Usafzai, Ioan Pop and Cornelia Revnic

This paper aims to present dual solutions for the two-dimension copper oxide with silver (CuO–Ag) and zinc oxide with silver (ZnO–Ag) hybrid nanofluid flow past a permeable…

Abstract

Purpose

This paper aims to present dual solutions for the two-dimension copper oxide with silver (CuO–Ag) and zinc oxide with silver (ZnO–Ag) hybrid nanofluid flow past a permeable shrinking sheet in a dusty fluid with velocity slip.

Design/methodology/approach

The governing partial differential equations for the two dust particle phases are reduced to the pertinent ordinary differential equations using a similarity transformation. Closed-form analytical solutions for the reduced skin friction and reduced Nusselt number, as well as for the velocity and temperature profiles, were presented, both graphically and in tables, under specific non-dimensional physical parameters such as the suction parameter, Prandtl number, slip parameter and shrinking parameter, which are also presented in both figures and tables.

Findings

The results indicate that for the shrinking flow, the wall skin friction is higher in the dusty fluid when compared with the clear (viscous) fluid. In addition, the effect of the fluid–particle interaction parameter to the fluid phase can be seen more clearly in the shrinking flow. Furthermore, multiple (dual, upper and lower branch solutions) are found for the governing similarity equations and the upper branch solution expanded with higher values of the suction parameter. It can be confirmed that the lower branch solution is unstable.

Practical implications

In practice, the study of the stretching/shrinking flow is crucially important and useful. Both the problems of steady and unsteady flow of a dusty fluid have a wide range of possible applications in practice, such as in the centrifugal separation of particles, sedimentation and underground disposal of radioactive waste materials.

Originality/value

Even though the problem of dusty fluid has been broadly investigated, very limited results can be found for a shrinking sheet. Indeed, this paper has succeeded to obtain analytically dual solutions. The stability analysis can be performed by following many published papers on stretching/shrinking sheets. Finally, the critical values and plotting curves for obtaining single or dual solution are successfully presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2012

Mehmet Merdan, Ahmet Yildirim and Ahmet Gökdoğan

The purpose of this paper is to show how an application of fractional two dimensional differential transformation method (DTM) obtained approximate analytical solution of…

Abstract

Purpose

The purpose of this paper is to show how an application of fractional two dimensional differential transformation method (DTM) obtained approximate analytical solution of time‐fraction modified equal width wave (MEW) equation.

Design/methodology/approach

The fractional derivative is described in the Caputo sense.

Findings

It is indicated that the solutions obtained by the two dimensional DTM are reliable and that this is an effective method for strongly nonlinear partial equations.

Originality/value

The paper shows that exact solutions can also be obtained from the known forms of the series solutions.

Article
Publication date: 15 August 2019

Emad H. Aly and Ioan Pop

The purpose of this study is to present both effective analytic and numerical solutions to MHD flow and heat transfer past a permeable stretching/shrinking sheet in a hybrid…

Abstract

Purpose

The purpose of this study is to present both effective analytic and numerical solutions to MHD flow and heat transfer past a permeable stretching/shrinking sheet in a hybrid nanofluid with suction/injection and convective boundary conditions. Water (base fluid) nanoparticles of alumina and copper were considered as a hybrid nanofluid.

Design/methodology/approach

Proper-similarity variables were applied to transform the system of partial differential equations into a system of ordinary (similarity) differential equations. Exact analytical solutions were then presented for the dimensionless stream and temperature functions. Further, the authors introduce a very nice analytic and numerical solutions for both small and large values of the magnetic parameter.

Findings

It was found that no/unique/two equal/dual physical solutions exist for the investigated boundary value problem. The physically realizable practice of these solutions depends on the range of the governing parameters. For a stretching/shrinking sheet, it was deduced that a hybrid nanofluid works as a cooler on increasing some of the investigated parameters. Moreover, in the case of a shrinking sheet, the first solutions of hybrid nanofluid are stable and physically realizable rather than the nanofluid, while those of the second solutions are not for both hybrid nanofluid and nanofluid.

Originality/value

The present results for the hybrid nanofluids are new and original, as they successfully extend (generalize) the problems previously considered by different authors for the case of nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 March 2024

U.S. Mahabaleshwar, Mahesh Rudraiah, Huang Huang and Bengt Ake Sunden

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is…

Abstract

Purpose

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is expanding and contracting while applying mass transpiration and velocity slip conditions to the flow. The nanofluid, which is composed of Au, Ag and Cu nanoparticles dispersed in water as the base fluid, possesses critical properties for increasing the heat transfer rate and is frequently used in manufacturing and industrial establishments.

Design/methodology/approach

The set of governing nonlinear partial differential equations is transformed into a set of nonlinear ordinary differential equations. The outcome of this differential equation is solved and obtained the closed-form solution and energy equation in the form of hypergeometric functions.

Findings

The velocity, micro-rotation and temperature field are investigated versus a parametric variation. The physical domains of mass suction or injection and micropolar characteristics play an important role in specifying the presence, singleness and multiplanes of exact solutions. In addition, many nondimensional characteristics of the profiles of temperature, angular velocity and velocity profiles are graphically shown with substantial consequences. Furthermore, adding nanoparticles increases the heat transfer rate of the fluid used in manufacturing and industrial establishments. The current findings may be used for better oil recovery procedures, smart materials such as magnetorheological fluids, targeted medicine administration and increased heat transmission. Concerning environmental cleanup, nanomaterial fabrication and biomedical devices, demonstrate their potential influence in a variety of disciplines.

Originality/value

The originality of this paper is to analyze the impact of inclined MHD at an angle with the ternary nanofluid on a micropolar fluid over an expanding and contracting sheet with thermal radiation effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 December 2022

Waqar Khan Usafzai, Rizwan Ul Haq and Emad H. Aly

This work aims to investigates exact solutions of the classical Glauert’s laminar wall jet mass and heat transfer under wall suction, wall contraction or dilation, and two thermal…

Abstract

Purpose

This work aims to investigates exact solutions of the classical Glauert’s laminar wall jet mass and heat transfer under wall suction, wall contraction or dilation, and two thermal transport boundary conditions; prescribed constant surface temperature and prescribed constant surface flux in nanofluidic environment.

Design/methodology/approach

The flow system arranged in terms of partial dif- ferential equations is non-dimensionalized with suitable dimensionless transformation variables, and this new set of equations is reduced into ordinary differential equations via a set of similarity transformations, where they are treated analytically for closed form solutions.

Findings

Exact solutions of nanofluid flow for velocity distributions, momentum flux, wall shear stress and heat transfer boundary layers for commonly studied nanoparticles; namely copper, alumina, silver, and titanium oxide are presented. The flow behavior of alumina and titanium oxide is identical, and a similar behavior is seen for copper and silver, making two pairs of identical traits. The mathematical expressions as well as visual analysis of wall shear drag and temperature gradient which are of practical interest are analyzed. It is shown that wall stretching or shrinking, wall transpiration and velocity slip together influences the jet flow mechanism and extends the original Glauert’s jet solutions. The exact solutions for the two temperature boundary layer conditions and temperature gradients are analyzed analytically. It is found that the effect of nanopar- ticles concentration on thermal boundary layer is intense, causing temperature uplift, whereas the wall transpiration causes a decrease in thermal layers.

Originality/value

The analysis carried out in nanofluid environment is genuinely new and unique, as our work generalizes the Glauert’s classical regular wall jet fluid problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2017

Mustafa Turkyilmazoglu, Kohilavani Naganthran and Ioan Pop

The purpose of this paper is to present both an analytical and a numerical analysis of the unsteady magnetohydrodynamic (MHD) rear stagnation-point flow over off-centred…

Abstract

Purpose

The purpose of this paper is to present both an analytical and a numerical analysis of the unsteady magnetohydrodynamic (MHD) rear stagnation-point flow over off-centred deformable surfaces.

Design/methodology/approach

The numerical MATLAB solver bvp4c suitable for routine boundary value problem is used for the set of ordinary differential equations reduced from the governing partial differential equations.

Findings

Multiple solutions are found for particular eigenvalues. The physical solution is computed by the help of a linear stability analysis. The authors have succeeded in discovering the second solutions, and it is suggested that these solutions are unstable and not physically realisable in practice. The current findings add to a growing body of literature on MHD stagnation-point flow problems. It is also found that the governing parameters have different effects on the flow characteristics.

Practical implications

Even though problems of steady MHD flows have been extensively studied for stagnation-point flows, limited findings can be found on the unsteady MHD rear stagnation-point flow over off-centred deformable surfaces.

Originality/value

The originality of this work is the application of a magnetic field on a time-dependent MHD rear stagnation-point flow over off-centred deformable surfaces.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 2020

Emad H. Aly and Abdelhalim Ebaid

The purpose of this paper is to study flow of the Marangoni boundary layer pasta surface embedded in a porous medium saturated by a hybrid nanofluid in the presence of a magnetic…

Abstract

Purpose

The purpose of this paper is to study flow of the Marangoni boundary layer pasta surface embedded in a porous medium saturated by a hybrid nanofluid in the presence of a magnetic field and thermal radiation.

Design/methodology/approach

The governing model was converted into ordinary differential equations applying proper similarity transformations. Therefore, Laplace transform was used to exactly solve the resulted equations. Hence, the influence of the velocity profile and temperature distribution was investigated under impacts of the involved parameters.

Findings

In the case of regular fluid, i.e. the solid volume fractions are zeros, the current results are in a very good agreement with those in the literature. It was found that the velocity decreases (increases) on increasing the parameters of copper-nanoparticles volume fraction, magnetic field and suction (permeability and injection). Further, the temperature increases (decreases) with an increase of the copper-nanoparticles volume fraction, magnetic field, injection and radiation (permeability and suction).

Originality/value

The current results of the Marangoni boundary layer problem for hybrid nanofluids are new, original and extend the previous problems investigated by many authors for the case of regular/nano fluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 April 2023

Amr M. Mahros, Emad H. Aly, John H. Merkin and Ioan M. Pop

This paper aims to study the magnetohydrodynamic (MHD) wall jet of a hybrid nanofluid flow over a moving surface with a thermally convective surface, wall moving with…

Abstract

Purpose

This paper aims to study the magnetohydrodynamic (MHD) wall jet of a hybrid nanofluid flow over a moving surface with a thermally convective surface, wall moving with suction/injection.

Design/methodology/approach

On using appropriate similarity transformations, the governing equations that describe the model are converted into a system of nonlinear ordinary differential equations. These equations are solved both analytically and numerically using standard two-point boundary-value problem solvers and Chebyshev pseudospectral differentiation matrix method, respectively.

Findings

These results show that the HNF is heating/cooling with growth of the positive/negative values of the parameter measuring the velocity of the moving surface. The temperature distributions increase, where the thermal boundary layer gets thicker, as the magnetic field strengthens and with an increase in the absolute value of the Biot number.

Originality/value

The current findings for the HNFs are new and original. They generalize successfully the problems investigated previously by different researchers for the cases of fluids and also nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 12000