Search results

1 – 10 of 147
Book part
Publication date: 21 May 2024

Muhammad Shujaat Mubarik and Sharfuddin Ahmed Khan

This chapter investigates the potential of integrating multiple criteria decision-making (MCDM) techniques with decision support systems of digital supply chain management (DSCM…

Abstract

This chapter investigates the potential of integrating multiple criteria decision-making (MCDM) techniques with decision support systems of digital supply chain management (DSCM) to achieve optimal outcomes. Digital supply chain (DSC) employs digital technologies (DTs) such as artificial intelligence (AI), Internet of Things (IoT), and big data analytics to provide extensive datasets and valuable insights pertaining to supply chain operations. MCDM techniques employ these realizations to facilitate informed decision-making through the assessment of multiple competing criteria. Usually MCDM approaches are used in the academic research with comparatively lesser application in industry. We argue that MCDM methodologies can play an instrumental role in DSCM, specifically in the areas of supplier selection, demand forecasting, and inventory management. Nevertheless, the integration of MCDM like AHP, ANP, DEMATEL, etc., with decision support systems presents several challenges, including concerns regarding the quality of data and the intricate task of assigning weights to various factors.

Details

The Theory, Methods and Application of Managing Digital Supply Chains
Type: Book
ISBN: 978-1-80455-968-0

Keywords

Open Access
Article
Publication date: 11 August 2022

Krishna Chauhan, Antti Peltokorpi, Rita Lavikka and Olli Seppänen

Prefabricated products are continually entering the building construction market; yet, the decision to use prefabricated products in a construction project is based mostly on…

2165

Abstract

Purpose

Prefabricated products are continually entering the building construction market; yet, the decision to use prefabricated products in a construction project is based mostly on personal preferences and the evaluation of direct costs. Researchers and practitioners have debated appropriate measurement systems for evaluating the impacts of prefabricated products and for comparing them with conventional on-site construction practices. The more advanced, cost–benefit approach to evaluating prefabricated products often inspires controversy because it may generate inaccurate results when converting non-monetary effects into costs. As prefabrication may affect multiple organisations and product subsystems, the method used to decide on production methods should consider multiple direct and indirect impacts, including nonmonetary ones. Thus, this study aims to develop a multi-criteria method to evaluate both the monetary and non-monetary impacts of prefabrication solutions to facilitate decision-making on whether to use prefabricated products.

Design/methodology/approach

Drawing upon a literature review, this research suggests a multi-criteria method that combines the choosing-by-advantage approach with a cost–benefit analysis. The method was presented for validation in focus group discussions and tested in a case involving a prefabricated bathroom.

Findings

The analysis indicates that the method helps a project’s stakeholders communicate about the relative merits of prefabrication and conventional construction while facilitating the final decision of whether to use prefabrication.

Originality/value

This research contributes a method of evaluating the monetary and non-monetary impacts of prefabricated products. The research underlines the need to evaluate the diverse benefits and sacrifices that stakeholder face when considering production methods in construction.

Article
Publication date: 1 March 2023

Hossein Shakibaei, Mohammad Reza Farhadi-Ramin, Mohammad Alipour-Vaezi, Amir Aghsami and Masoud Rabbani

Every day, small and big incidents happen all over the world, and given the human, financial and spiritual damage they cause, proper planning should be sought to deal with them so…

Abstract

Purpose

Every day, small and big incidents happen all over the world, and given the human, financial and spiritual damage they cause, proper planning should be sought to deal with them so they can be appropriately managed in times of crisis. This study aims to examine humanitarian supply chain models.

Design/methodology/approach

A new model is developed to pursue the necessary relations in an optimal way that will minimize human, financial and moral losses. In this developed model, in order to optimize the problem and minimize the amount of human and financial losses, the following subjects have been applied: magnitude of the areas in which an accident may occur as obtained by multiple attribute decision-making methods, the distances between relief centers, the number of available rescuers, the number of rescuers required and the risk level of each patient which is determined using previous data and machine learning (ML) algorithms.

Findings

For this purpose, a case study in the east of Tehran has been conducted. According to the results obtained from the algorithms, problem modeling and case study, the accuracy of the proposed model is evaluated very well.

Originality/value

Obtaining each injured person's priority using ML techniques and each area's importance or risk level, besides developing a bi-objective mathematical model and using multiple attribute decision-making methods, make this study unique among very few studies that concern ML in the humanitarian supply chain. Moreover, the findings validate the results and the model's functionality very well.

Article
Publication date: 5 February 2024

Swarup Mukherjee, Anupam De and Supriyo Roy

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk…

Abstract

Purpose

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk prioritization uses a risk priority number (RPN) aligned to the risk analysis. Imprecise information coupled with a lack of dealing with hesitancy margins enlarges the scope, leading to improper assessment of risks. This significantly affects monitoring quality and performance. Against the backdrop, a methodology that identifies and prioritizes the operational supply chain risk factors signifies better risk assessment.

Design/methodology/approach

The study proposes a multi-criteria model for risk prioritization involving multiple decision-makers (DMs). The methodology offers a robust, hybrid system based on the Intuitionistic Fuzzy (IF) Set merged with the “Technique for Order Performance by Similarity to Ideal Solution.” The nature of the model is robust. The same is shown by applying fuzzy concepts under multi-criteria decision-making (MCDM) to prioritize the identified business risks for better assessment.

Findings

The proposed IF Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) for risk prioritization model can improve the decisions within organizations that make up the chains, thus guaranteeing a “better quality in risk management.” Establishing an efficient representation of uncertain information related to traditional failure mode and effects analysis (FMEA) treatment involving multiple DMs means identifying potential risks in advance and providing better supply chain control.

Research limitations/implications

In a company’s supply chain, blockchain allows data storage and transparent transmission of flows with traceability, privacy, security and transparency (Roy et al., 2022). They asserted that blockchain technology has great potential for traceability. Since risk assessment in supply chain operations can be treated as a traceability problem, further research is needed to use blockchain technologies. Lastly, issues like risk will be better assessed if predicted well; further research demands the suitability of applying predictive analysis on risk.

Practical implications

The study proposes a hybrid framework based on the generic risk assessment and MCDM methodologies under a fuzzy environment system. By this, the authors try to address the supply chain risk assessment and mitigation framework better than the conventional one. To the best of their knowledge, no study is found in existing literature attempting to explore the efficacy of the proposed hybrid approach over the traditional RPN system in prime sectors like steel (with production planning data). The validation experiment indicates the effectiveness of the results obtained from the proposed IF TOPSIS Approach to Risk Prioritization methodology is more practical and resembles the actual scenario compared to those obtained using the traditional RPN system (Kim et al., 2018; Kumar et al., 2018).

Originality/value

This study provides mathematical models to simulate the supply chain risk assessment, thus helping the manufacturer rank the risk level. In the end, the authors apply this model in a big-sized organization to validate its accuracy. The authors validate the proposed approach to an integrated steel plant impacting the production planning process. The model’s outcome substantially adds value to the current risk assessment and prioritization, significantly affecting better risk management quality.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 July 2022

Ashis Mitra

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created…

Abstract

Purpose

Cotton fibre lots are graded and selected for yarn spinning based on their quality value which is a function of certain fibre properties. Cotton grading and selection has created a domain of emerging interest among the researchers. Several researchers have addressed the said issue using a few exponents of multi-criteria decision-making (MCDM) technique. The purpose of this study is to demonstrate a cotton selection problem using a recently developed measurement of alternatives and ranking according to compromise solution (MARCOS) method which can handle almost any decision problem involving a finite number of alternatives and multiple conflicting decision criteria.

Design/methodology/approach

The MARCOS method of the MCDM technique was deployed in this study to rank 17 cotton fibre lots based on their quality values. Six apposite fibre properties, namely, fibre bundle strength, elongation, fineness, upper half mean length, uniformity index and short fibre content are considered as the six decision criteria assigning weights previously determined by an earlier researcher using analytic hierarchy process.

Findings

Among the 17 alternatives, C9 secured rank 1 (the best lot) with the highest utility function (0.704) and C7 occupied rank 17 (the worst lot) with the lowest utility function (0.596). Ranking given by MARCOS method showed high degree of congruence with the earlier approaches, as evidenced by high rank correlation coefficients (Rs > 0.814). During sensitivity analyses, no occurrence of rank reversal is observed. The correlations between the quality value-based ranking and the yarn tenacity-based rankings are better than many of the traditional methods. The results can be improved further by adopting other efficient method of weighting the criteria.

Practical implications

The properties of raw cotton have significant impact on the quality of final yarn. Compared to the traditional methods, MCDM is reported as the most viable solution in which fibre parameters are given their due importance while formulating a single index known as quality value. The present study demonstrates the application of a recently developed exponent of MCDM in the name of MARCOS for the first time to address a cotton fibre selection problem for textile spinning mills. The same approach can also be extended to solve other decision problems of the textile industry, in general.

Originality/value

Novelty of the present study lies in the fact that the MARCOS is a very recently developed MCDM method, and this is a maiden application of the MARCOS method in the domain of textile, in general, and cotton industry, in particular. The approach is very simple, highly effective and quite flexible in terms of number of alternatives and decision criteria, although highly robust and stable.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 3 October 2023

Renan Ribeiro Do Prado, Pedro Antonio Boareto, Joceir Chaves and Eduardo Alves Portela Santos

The aim of this paper is to explore the possibility of using the Define-Measure-Analyze-Improve-Control (DMAIC) cycle, process mining (PM) and multi-criteria decision methods in…

Abstract

Purpose

The aim of this paper is to explore the possibility of using the Define-Measure-Analyze-Improve-Control (DMAIC) cycle, process mining (PM) and multi-criteria decision methods in an integrated way so that these three elements combined result in a methodology called the Agile DMAIC cycle, which brings more agility and reliability in the execution of the Six Sigma process.

Design/methodology/approach

The approach taken by the authors in this study was to analyze the studies arising from this union of concepts and to focus on using PM tools where appropriate to accelerate the DMAIC cycle by improving the first two steps, and to test using the AHP as a decision-making process, to bring more excellent reliability in the definition of indicators.

Findings

It was indicated that there was a gain with acquiring indicators and process maps generated by PM. And through the AHP, there was a greater accuracy in determining the importance of the indicators.

Practical implications

Through the results and findings of this study, more organizations can understand the potential of integrating Six Sigma and PM. It was just developed for the first two steps of the DMAIC cycle, and it is also a replicable method for any Six Sigma project where data acquisition through mining is possible.

Originality/value

The authors develop a fully applicable and understandable methodology which can be replicated in other settings and expanded in future research.

Details

International Journal of Lean Six Sigma, vol. 15 no. 3
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 25 April 2024

Sukran Seker

Since conducting agile strategies provides sustainable passenger satisfaction and revenue by replacing applied policies with more profitable ones rapidly, the focus of this study…

Abstract

Purpose

Since conducting agile strategies provides sustainable passenger satisfaction and revenue by replacing applied policies with more profitable ones rapidly, the focus of this study is to evaluate agile attributes for managing low-cost carriers (LCCs) operations by means of resources and competences based on dynamic capabilities built on resource-based view (RBV) theory and to achieve sustainable competitive advantage in a volatile and dynamic air transport environment. LCCs in Turkey are also evaluated in this study since the competition among LCCs is high to gain market share and they can adapt quickly to all kinds of circumstances.

Design/methodology/approach

Two well-known Multi-Criteria Decision-Making Methods (MCDM) named as the Stepwise Weight Assessment Ratio Analysis (SWARA) and multi-attributive border approximation area comparison (MABAC) methods by employing Picture fuzzy sets (PiFS) are employed to determine weight of agile attributes and superiority of LCCs based on agile attributes in the market, respectively. To check the consistency and robustness of the results for the proposed approach, comparative and sensitivity analysis are performed at the end of the study.

Findings

While the ranking orders of agile attributes are Strategic Responsiveness (AG1), Financial Management (AG4), Quality (AG2), Digital integration (AG3) and Reliability (AG5), respectively, LCC2 is selected as the best agile airline company in Turkey with respect to agile attributes. SWARA and MABAC method based on PiFS is appropriate and effective method to evaluate agile attributes that has important reference value for the airline companies in aviation industry.

Practical implications

The findings of this study will support managers in the airline industry to conduct airline operations more flexibly and effectively to take sustainable competitive advantage in unexpected and dynamic environment.

Originality/value

To the author' best knowledge, this study is the first developed to identify the attributes necessary to increase agility in LCCs. Thus, as a systematic tool, a framework is developed for the implementation of agile attributes to achieve sustainable competitive advantage in the airline industry and presented a roadmap for airline managers to deal with crises and challenging situations by satisfying customer and increasing competitiveness.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 28 February 2022

Ebrahim Vatan, Gholam Ali Raissi Ardali and Arash Shahin

This study aims to investigate the effects of organizational culture factors on the selection of software process development models and develops a conceptual model for selecting…

Abstract

Purpose

This study aims to investigate the effects of organizational culture factors on the selection of software process development models and develops a conceptual model for selecting and adopting process development models with an organizational culture approach, using 12 criteria and their sub-criteria defined in Fey and Denison’s model (12 criteria).

Design/methodology/approach

The research hypotheses were investigated using statistical analysis, and then the criteria and sub-criteria were selected based on Fey and Denison’s model and the experts’ viewpoints. Afterward, the organizational culture of the selected company was measured using the data from 2016 and 2017, based on Fey and Denison’s questionnaire. Due to the correlation between the criteria, using the decision-making trial and evaluation technique, the correlation between sub-criteria were determined, and by analytical network process method and using Super-Decision software, the process development model was preferred to the 12 common models in information systems development.

Findings

Results indicated a significant and positive effect of organizational culture factors (except the core values factor) on the selection of development models. Also, by changing the value of organizational culture, the selected process development model changed either. Sensitivity analysis performed on the sub-criteria implied that by changing and improving some sub-criteria, the organization will be ready and willing to use the agile or risk-based models such as spiral and win-win models. Concerning units where the mentioned indicators were at moderate and low limits, models such as waterfall, V-shaped and incremental worked more appropriately.

Originality/value

While many studies were performed in comparing development models and investigating their strengths and weaknesses, and the impact of organizational culture on the success of information technology projects, literature indicated that the impact of organizational sub-culture prevailing in the selection of development process models has not been investigated. In this study, new factors and indicators were addressed affecting the selection of development models with a focus on organizational culture. Correlation among the factors and indicators was also investigated and, finally, a conceptual model was proposed for proper adoption of the models and methodologies of system development.

Article
Publication date: 17 April 2024

Charitha Sasika Hettiarachchi, Nanfei Sun, Trang Minh Quynh Le and Naveed Saleem

The COVID-19 pandemic has posed many challenges in almost all sectors around the globe. Because of the pandemic, government entities responsible for managing health-care resources…

Abstract

Purpose

The COVID-19 pandemic has posed many challenges in almost all sectors around the globe. Because of the pandemic, government entities responsible for managing health-care resources face challenges in managing and distributing their limited and valuable health resources. In addition, severe outbreaks may occur in a small or large geographical area. Therefore, county-level preparation is crucial for officials and organizations who manage such disease outbreaks. However, most COVID-19-related research projects have focused on either state- or country-level. Only a few studies have considered county-level preparations, such as identifying high-risk counties of a particular state to fight against the COVID-19 pandemic. Therefore, the purpose of this research is to prioritize counties in a state based on their COVID-19-related risks to manage the COVID outbreak effectively.

Design/methodology/approach

In this research, the authors use a systematic hybrid approach that uses a clustering technique to group counties that share similar COVID conditions and use a multi-criteria decision-making approach – the analytic hierarchy process – to rank clusters with respect to the severity of the pandemic. The clustering was performed using two methods, k-means and fuzzy c-means, but only one of them was used at a time during the experiment.

Findings

The results of this study indicate that the proposed approach can effectively identify and rank the most vulnerable counties in a particular state. Hence, state health resources managing entities can identify counties in desperate need of more attention before they allocate their resources and better prepare those counties before another surge.

Originality/value

To the best of the authors’ knowledge, this study is the first to use both an unsupervised learning approach and the analytic hierarchy process to identify and rank state counties in accordance with the severity of COVID-19.

Details

Journal of Systems and Information Technology, vol. 26 no. 2
Type: Research Article
ISSN: 1328-7265

Keywords

Article
Publication date: 19 December 2023

Mariana da Silva Barbosa Gama and Andrei Bonamigo

In response to mounting global concerns about climate change and scarcity of natural resources, manufacturers have been pressured to develop strategies and enhance their…

Abstract

Purpose

In response to mounting global concerns about climate change and scarcity of natural resources, manufacturers have been pressured to develop strategies and enhance their sustainability performance. The integration of sustainable lean manufacturing (SLM) during value chain processes could balance environmental, social and economic concerns into their decision-making, which not only ensures responsible practices but also drives efficiency and success. This paper aims to identify, measure and prioritize metrics to develop a performance measurement system that assesses the multi-dimensional performance of SLM.

Design/methodology/approach

Strategic decision-making has some conflicting criteria and objectives to be considered simultaneously. The Multi-Criteria Decision Making provides a foundation for selecting, sorting and prioritizing these strategies with the determination of drivers and indicator weight.

Findings

The performance model enables the decision-makers to consistently evaluate the level of sustainability through a multidimensional framework, which could support the assessment of the existing sustainability of a manufacturing process and analyze opportunities for improvement. This study divided the performance into five drivers: Quality, Operational, Finance, Environment, Safety and People and selected 17 KPIs for assessing the multi-dimensional performance of SLM organizations. The research results revealed an organization's perspective transition from strategies focused on operational and economic performance to a more sustainable ideal with greater importance for social and environmental directions.

Originality/value

This framework will be facilitated by the selection of the most significant drivers and the development of strategic plans for the successful adoption of sustainable manufacturing. The practices support implementation, pursue competitive advantages and sustain manufacturing, meeting strategic requirements of suitable and lean performance. With the limited resources of the organizations, the framework proposed will guide the priorities and actions to be taken toward the SLM.

Details

Journal of Strategy and Management, vol. 17 no. 2
Type: Research Article
ISSN: 1755-425X

Keywords

1 – 10 of 147