Search results

1 – 10 of 934
Article
Publication date: 26 June 2019

Wojciech Pietrowski, Wojciech Ludowicz and Rafal Marek Wojciechowski

The specific modulation methods are used to control different kind of single-phase, as well as three-phase, inverters to ensure flexibility and high quality of the output…

114

Abstract

Purpose

The specific modulation methods are used to control different kind of single-phase, as well as three-phase, inverters to ensure flexibility and high quality of the output waveform. This paper aims to present a combination of two classical methods, namely, pulse width modulation method and direct digital synthesis modulation method.

Design/methodology/approach

The total harmonic distortion of output waveforms of single-phase inverter based on elaborated modulation method has been determined by means of fast Fourier transform analysis. Tests have been carried out by using standard low-frequency application and also a wireless resonant energy link system.

Findings

Applying appropriate timer parameters of microcontroller enables to obtain a waveform for given output parameters (amplitude, frequency, frequency modulation index, etc.). The only limitation is the computing power of a microcontroller.

Originality/value

The elaborated method can be successfully used in both low- and high-frequency application ensuring high level of output waveform quality. Additional signal generators and the control of amplitude modulation ratio are no longer indispensable, what simplify immensely a control system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 2005

Servet Tuncer and Yetkin Tatar

In this paper, a new application of the Selected Harmonic Elimination Pulse Width Modulation (SHEPWM) technique used in the cascade multilevel inverter topology which is formed by…

1388

Abstract

Purpose

In this paper, a new application of the Selected Harmonic Elimination Pulse Width Modulation (SHEPWM) technique used in the cascade multilevel inverter topology which is formed by series connections of one‐phase bridge type inverters (H‐bridge) is introduced. The advantage of the SHEPWM technique is its ability to operate in low switching frequency that makes it suitable for high power applications.

Design/methodology/approach

First, the switching angles are calculated using constrained optimization technique. By using these switching angles, the fundamental harmonic can be controlled and the selected harmonics can be eliminated. Then, using these calculated switching angles, a set of equation is formed which calculate the switching angles with respect to the modulation index. The switching angles at any modulation index can be easily obtained by solving the equation set. In this study, this equation set has been solved online using dSPACE DS1103 controller board. Using this technique, three‐phase voltages have been obtained from a five‐level cascade inverter. These voltages are applied to an induction motor.

Findings

The simulation results are verified by the experimental results. The results show that selected harmonics can be eliminated and an ac voltage with variable amplitude and frequency can be obtained using the proposed technique.

Originality/value

This paper presents a new application of the (SHEPWM) technique for multilevel inverters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 February 2023

Mingxiao Dai, Xu Peng, Xiao Liang, Xinyu Zhu, Xiaohan Liu, Xijun Liu, Pengcheng Han and Chao Wu

The purpose of this paper is to propose a DC-port voltage balance strategy realizing it by logic combination modulation (LCM). This voltage balance strategy is brief and high…

Abstract

Purpose

The purpose of this paper is to propose a DC-port voltage balance strategy realizing it by logic combination modulation (LCM). This voltage balance strategy is brief and high efficient, which can be used in many power electronic devices adopting the cascaded H-bridge rectifier (CHBR) such as power electronic transformer (PET).

Design/methodology/approach

The CHBR is typically as a core component in the power electronic devices to implement the voltage or current conversion. The modulation method presented here is aiming to solve the voltage imbalance problem occurred in the CHBR with more stable work station and higher reliability in ordinary operating conditions. In particular, by changing the switch states smoothly and quickly, the DC-port voltage can be controlled as the ideal value even one of the modules in CHBR is facing the load-removed problem.

Findings

By using the voltage balance strategy of LCM, the problem of voltage imbalance occurring in three-phase cascaded rectifiers has been solved properly. With the lower modulation depth, the efficiency of the strategy is shown to be better and stronger. The strategy can work reliably and quickly no matter facing the problem as load-removed change or the ordinary operating conditions.

Research limitations/implications

The limitation of the proposed DC-port voltage balance strategy is calculated and proved, in a three-module CHBR, the LCM could balance the DC-port voltage while one module facing the load-removed situation under 0.83 modulation depth.

Originality/value

This paper provides a useful and particular voltage balance strategy which can be used in the topology of three-phase cascaded rectifier. The value of the strategy is that a brief and reliable voltage balance method in the power electronic devices can be achieved. What is more, facing the problem, such as load-removed, in outport, the strategy can response quickly with no switch jump and switch frequency rising.

Details

Microelectronics International, vol. 40 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 January 2010

Thomas Weidinger

The purpose of this paper is to present an analysis of common mode oscillations of several kilohertz in electrical drive systems. The analysed oscillations occur especially in…

Abstract

Purpose

The purpose of this paper is to present an analysis of common mode oscillations of several kilohertz in electrical drive systems. The analysed oscillations occur especially in electrical drive systems with active front end (AFE), common DC link and long motor cables and are independent of the well‐known reflection phenomenon. Owing to the resulting overvoltages, the motor isolation lifetime may be significantly reduced.

Design/methodology/approach

For the analysis of the described problem, all parts of the common mode system of an electrical drive system are carefully modelled. This leads to an analysis of the frequency behaviour of the common mode system. The excitation mechanisms are also analysed and simulation in the time domain is performed to show the resulting overvoltages. Finally, measurements confirm the findings.

Findings

The investigations identified the reasons for the oscillations: the common mode system behaviour, including the common mode resonant behaviour of some special kinds of motor. Furthermore, the excitation mechanism is found to be dependent on the modulation schemes of the AFE and the inverters. Accordingly, a special remedy concerning the modulation is derived and compared to other known remedies. The results of the simulations show the good efficiency of the proposed remedy.

Originality/value

The presented results describe important basics for the development of electrical drive systems. By taking these issues into consideration, many unpredictable failures can be avoided.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Javier Pereda and Juan Dixon

The aim of this paper is to improve and adapt cascaded multilevel converters for electric vehicles (EVs) to have all the advantages of these converters and to eliminate its…

Abstract

Purpose

The aim of this paper is to improve and adapt cascaded multilevel converters for electric vehicles (EVs) to have all the advantages of these converters and to eliminate its limitation in the use of EVs applications. Specifically, the purpose is to use only a single power source (battery pack, fuel cell, etc.) and to generate a higher power‐quality than regular multilevel converters.

Design/methodology/approach

This paper is based in a cascaded multilevel converter conformed by two 3‐level inverters connected in series. The voltage sources of the auxiliary inverter were replaced by floating capacitors which work as active filters, reducing the power sources to one. The floating capacitor voltages were controlled by a PI controller that adjusts the modulation index (m) to obtain a zero average power in the auxiliary inverters, and a predictive control selects the optimal redundant state to reduce the error and balance all the capacitor voltages. As the modulation index is determined by the PI controller, the output voltage magnitude must be controlled by a variable voltage source (e.g. buck‐boost chopper). Additionally, the converter works with new optimal voltage asymmetries to obtain higher power quality and capacitor control stability.

Findings

The proposed converter uses a topology that conventionally generates 9‐levels of voltage, but with the proposed asymmetry is as generate 11‐levels. Also, the auxiliary power sources were eliminated.

Research limitations/implications

The proposed solution has a limited dynamic response due to the variation rate of the capacitor voltage, which is limited by the load current and the capacitance. However, the dynamic response and control stability is satisfactory for EVs applications.

Originality/value

The paper presents a new control to manage the floating capacitor voltages and uses new voltage asymmetries in cascaded multilevel converters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 October 2018

Fardin Hasanzad, Hasan Rastegar and Mohammad Pichan

This paper aims to investigate the common-mode voltage (CMV) issue of a three-phase four-leg voltage-source inverter. A new space vector modulation method, named as…

Abstract

Purpose

This paper aims to investigate the common-mode voltage (CMV) issue of a three-phase four-leg voltage-source inverter. A new space vector modulation method, named as three-dimensional active zero state Pulse-width modulation (PWM) (3-D AZSPWM), is proposed to reduce the CMV level.

Design/methodology/approach

PWM is a general method to generate the switching signals of the power converters in order to obtain high-quality output voltages. However, the CMV produced by PWM methods has become a serious problem. 3-D AZSPWM is proposed to solve this issue. In 3-D AZSPWM, instead of using zero voltage vectors with high CMV level, appropriate complementary non-zero vectors are introduced to synthesize reference vector. The proposed method is classified into four types of AZSPWM1(a), AZSPWM1(b), AZSPWM2(a) and AZSPWM2(b) based on different complementary vectors chosen for each type. An extend software simulation using MATLAB/Simulink is performed to verify the superior performance of the proposed methods.

Findings

Compared to other reduced CMV methods, the proposed method not only reduces the CMV but also retains the positive characteristics of the three-dimensional classical space vector PWM (3-D CSVPWM).

Originality/value

The proposed method does not suffer from linear modulation region limitation and also does not impose additional switching loss. Furthermore, calculated output voltage harmonic distortion factor illuminates acceptable quality of output voltage produced by the proposed method.

Article
Publication date: 9 January 2007

Bassem El Badsi, Abdessattar Guermazi and Ahmed Masmoudi

The paper aims to discuss the comparison of the performance of four space‐vector pulse‐width modulation (SVPWM) strategies dedicated to four‐switch three‐phase inverters (FSTPI).

Abstract

Purpose

The paper aims to discuss the comparison of the performance of four space‐vector pulse‐width modulation (SVPWM) strategies dedicated to four‐switch three‐phase inverters (FSTPI).

Design/methodology/approach

The comparison is based on three comparison criteria: the total harmonic distortion, the switching loss factor, and the quality factor. The comparison is extended to the FFT of the phase currents and to the analysis of the ripples of the electromagnetic torque of the induction motor.

Findings

It has been clearly shown that the basic SVPWM strategy of the conventional six‐switch three‐phase inverter (SSTPI) offers better performance than those of the four FSTPI‐SVPWM strategies. This said, it has been found that the performance of two among the four FSTPI‐SVPWM strategies tend to those of the SSTPI‐SVPWM basic strategy, especially in high switching frequencies.

Research limitations/implications

The work should be extended by an experimental validation of the simulation results.

Practical implications

The established results open up crucial benefits from the point of view of cost‐effectiveness and volume‐compactness improvements of induction motor drives especially in large‐scale industries such as the automotive one where electric and hybrid propulsion systems are currently regarded as an interesting alternative to substitute or to assist the thermal propulsion systems.

Originality/value

The implementation in the FSTPI feeding an induction motor of SVPWM strategies exhibiting acceptable performance, which tend to those yielded by the SSTPI‐SVPWM basic strategy especially in high switching frequencies, is extended here.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 November 2013

Senthilkumaran Mahadevan, Siddharth Raju and Ranganath Muthu

The high-frequency common-mode voltage introduced by power converters, using conventional modulation techniques, results in common-mode current that has the potential to cause…

Abstract

Purpose

The high-frequency common-mode voltage introduced by power converters, using conventional modulation techniques, results in common-mode current that has the potential to cause physical damage to the shaft and bearings of electric drives as well as unwanted tripping of ground fault relays in motor drives and electrical networks. The paper aims to provide a complete elimination of common mode voltage using a matrix converter (MC) with a new modulation strategy that reduces the size of the power converter system considerably. Further, a new MC topology is proposed to eliminate the common mode voltage with improved voltage transfer ratio (VTR).

Design/methodology/approach

The direct MC topology is selected, as it is the only converter topology that has the potential to eliminate common mode voltage in direct AC to AC systems. Using the rotating space vector technique, common mode voltage is eliminated but this reduces the VTR of the converter. To improve the VTR, a modified MC topology with a modified rotating space vector strategy is proposed. In addition, for improving the power factor at the input, the input current control strategy is developed.

Findings

The use of rotating space vector technique eliminates the common mode voltage even under all input abnormalities like unbalance and harmonics. By applying positive and negative rotating space vectors, input power factor control can be achieved. However, the control range is limited from unity power factor to the output power factor. It is observed that in the current controlled technique the modulation index reduces further. It is also found that there is a reduction in switching stresses of individual switches in proposed topology compared to direct MC topology.

Originality/value

In this paper, a modified rotating space vector technique is applied to the proposed converter topology for elimination of common mode voltage with an increased VTR. The topology can be used for common mode voltage elimination in existing electric drives without the need for modifying the drive system.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 2002

S.A. Al‐Mawsawi, M.R. Qader and K.L. Lo [1]

In recent years it has been illustrated that the Unified Power Flow Controller (UPFC) installation location plays an important role in effecting nonlinearly its steady state…

Abstract

In recent years it has been illustrated that the Unified Power Flow Controller (UPFC) installation location plays an important role in effecting nonlinearly its steady state performance. A Pulse Width Modulation (PWM) based UPFC used as a voltage regulator is modeled and analyzed to investigate its optimal position in the transmission line. From the simulation results it is demonstration that by varying the modulation index of the device it can control the distribution of the active and reactive power flows. In addition, this paper deals with the definition and simulation of the control strategy of the closed‐loop UPFC with a series compensation block when it operates as a terminal voltage regulator using Electromagnetic Transients Program (EMTP). The design and simulation of two types of digital controller strategies for the study system in this paper have been carried out. The dynamic performance in terms of speed stability, accuracy, robustness and simplicity of a PI controller with gain scheduling and a fuzzy logic controller have been tested and compared.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 January 2020

Subhendu Bikash Santra and Subodh Kumar Mohanty

The purpose of this study is to present a new methodology of selective harmonics elimination (SHE) technique suitable for single-phase photovoltaic (PV) tied pulse width modulated…

Abstract

Purpose

The purpose of this study is to present a new methodology of selective harmonics elimination (SHE) technique suitable for single-phase photovoltaic (PV) tied pulse width modulated (PWM) inverter.

Design/methodology/approach

In the proposed SHE, switching angles for inverter control are determined offline through numerical techniques and stored in a microcontroller memory as a function of modulation index (md). The methodology uses the solution that leads to a lower change of switching angles from the previous modulation index (md) for storing in the processor memory for multiple solutions. This leads to a smaller number of sections when a piecewise mixed model is considered for storing the entire switching angle curve for the online inverter control. The proposed idea is simulated and experimentally validated on a laboratory prototype of PV (500 W) grid-tied PWM inverter. The control environment is then realized in NI c-RIO 9082.

Findings

This proposed technique is suitable for limiting voltage total harmonics distortion (THD) in single-phase PV tied grid connected voltage source inverter (VSI). Moreover, it is found that filter (L-C) size requirement is less.

Originality/value

The proposed SHE with piecewise mixed model technique effectively reduces voltage THD with less filter size (L-C) in a single-phase PV-tied system.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 934