Search results

1 – 10 of 865
Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three decades…

8481

Abstract

Purpose

Power‐electronic systems have been playing a significant role in the integration of large‐scale wind turbines into power systems due to the fact that during the past three decades power‐electronic technology has experienced a dramatic evolution. This second part of the paper aims to focus on a comprehensive survey of power converters and their associated control systems for high‐power wind energy generation applications.

Design/methodology/approach

Advanced control strategies, i.e. field‐oriented vector control and direct power control, are initially reviewed for wind‐turbine driven doubly fed induction generator (DFIG) systems. Various topologies of power converters, comprising back‐to‐back (BTB) connected two‐ and multi‐level voltage source converters (VSCs), BTB current source converters (CSCs) and matrix converters, are identified for high‐power wind‐turbine driven PMSG systems, with their respective features and challenges outlined. Finally, several control issues, viz., basic control targets, active damping control and sensorless control schemes, are elaborated for the machine‐ and grid‐side converters of PMSG wind generation systems.

Findings

For high‐power PMSG‐based wind turbines ranging from 3 MW to 5 MW, parallel‐connected 2‐level LV BTB VSCs are the most cost‐effective converter topology with mature commercial products, particularly for dual 3‐phase stator‐winding PMSG generation systems. For higher‐capacity wind‐turbine driven PMSGs rated from 5 MW to 10 MW, medium voltage multi‐level converters, such as 5‐level regenerative CHB, 3‐ and 4‐level FC BTB VSC, and 3‐level BTB VSC, are preferred. Among them, 3‐level BTB NPC topology is the favorite with well‐proven technology and industrial applications, which can also be extensively applicable with open‐end winding and dual stator‐winding PMSGs so as to create even higher voltage/power wind generation systems. Sensorless control algorithms based on fundamental voltages/currents are suggested to be employed in the basic VC/DPC schemes for enhancing the robustness in the entire PMSG‐based wind power generation system, due to that the problems related with electromagnetic interferences in the position signals and the failures in the mechanical encoders can be avoided.

Originality/value

This second part of the paper for the first time systematically reviews the latest state of arts with regard to power converters and their associated advanced control strategies for high‐power wind energy generation applications. It summarizes a variety of converter topologies with pros and cons highlighted for different power ratings of wind turbines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 April 2022

Phanindra Thota, Amarendra Reddy Bhimavarapu and V.V.S. Bhaskara Reddy Chintapalli

This study aims to propose a new non-isolated Multi-Input Zeta-SEPIC (MIZS) dc–dc converter for renewable energy sources integration with different voltage levels (low-voltage…

69

Abstract

Purpose

This study aims to propose a new non-isolated Multi-Input Zeta-SEPIC (MIZS) dc–dc converter for renewable energy sources integration with different voltage levels (low-voltage source, high-voltage source). The chosen configuration of the converter is capable of performing bucking as well as boosting operations in various modes of operation.

Design/methodology/approach

Parameters of the selected MIZS converter are designed using the time-domain analysis. The selected converter belongs to the sixth-order family with two switches and six energy storage elements. State-space model of the converter is developed for each mode of operation, and using these individual state-space models, an average state-space model of the converter useful to carry out detailed analysis for different operating conditions is developed. Analysis related to operational stability of the converter is also carried out using Participation Factor (PaF)-based Eigen value analysis.

Findings

Using the PaF-based Eigen analysis, participation of the various state variables in different Eigen modes and vice versa is carried out. Performance of the converter for different parameter variations in the allowable range is determined and the same has been used to find the operational stability of the converter under different modes of operation. The selected converter has low inductor ripple currents and output voltage ripples when delivering the power to load.

Originality/value

Because operational stability of the converter under various operating conditions is one of the key performance indicators for selecting a particular type of converter, PaF-based Eigen value analysis has been carried out using the average state-space model developed for the selected MIZS converter. Operational stability analysis of the converter is carried out for parameter variations also. In addition, participation of the various states in each Eigen mode and vice versa have been analyzed for designed parameter values and also variation within the specified range of variations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2014

Shuo Liu, Baoming Ge, Xinjian Jiang, Haitham Abu-Rub and Fangzheng Peng

– The paper aims to propose a new type of three-phase quasi-Z-source indirect matrix converter (QZSIMC) to extend the voltage gain for application in the induction motor drives.

Abstract

Purpose

The paper aims to propose a new type of three-phase quasi-Z-source indirect matrix converter (QZSIMC) to extend the voltage gain for application in the induction motor drives.

Design/methodology/approach

A unique H-shape quasi-Z-source network is connected between the three-phase voltage source and traditional indirect matrix converter to achieve the voltage boost and buck in a single-stage power conversion. The complete space vector modulation (SVM) method is proposed to control the proposed QZSIMC. The output voltage amplitude of quasi-Z-source network can be boosted by the shoot-through of the front-end rectifier, so the whole system's voltage gain is extended. Meanwhile, the QZSIMC modeling and quasi-Z-source impedance parameter design are developed by using the state space averaging method. The design-oriented analysis based on small signal model is used to investigate the quasi-Z-source impedance parameter's impact on the QZSIMC's dynamic performance. A simulated application example employs a 4-kW induction motor drive to verify the proposed QZSIMC, the developed modulation method and parameter design method.

Findings

The proposed QZSIMC can achieve high voltage gain larger than one and also can fulfill buck function, which widens the induction motor drive's operation range. The simulation results verify the proposed QZSIMC and SVM and also validate the quality performance of the proposed induction motor drive and all theoretical analysis and parameter design method.

Originality/value

The proposed QZSIMC effectively overcomes the limitation of traditional indirect matrix converter, through extending the voltage gain larger than one. The systematic principle, analysis, parameter design, and simulation verification provide the proposed QZSIMC with a feasible approach in practical induction motor drive applications.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 1998

Mehmet Özdemir, Sedat Sünter and Bilal Gümüs5

In this study, a single‐phase induction motor with constant v/f, fed by matrix converter, is considered under various frequencies. The modeling of the motor, mechanical load for…

983

Abstract

In this study, a single‐phase induction motor with constant v/f, fed by matrix converter, is considered under various frequencies. The modeling of the motor, mechanical load for single phase induction motor and matrix converter have been obtained by using Simulink package program. The performance of the motor under various frequencies is determined. A single‐phase induction motor considered in this work has a running capacitor. The analysis and simulation results are presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 17 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 2013

Ebrahim Babaei and Hamed Mashinchi Mahery

The purpose of this paper is to propose a new method for mathematical modeling of the buck dc‐dc converter in discontinuous conduction mode (DCM). By using the presented modeling…

Abstract

Purpose

The purpose of this paper is to propose a new method for mathematical modeling of the buck dc‐dc converter in discontinuous conduction mode (DCM). By using the presented modeling method, the analysis of the transient and the steady states of the buck dc‐dc converter can be performed.

Design/methodology/approach

The proposed method is based on the two Laplace and Z transforms. In the proposed method, at first, the equations of the inductor current and the capacitor voltage are obtained as the power switch is on and off. Then by using the Laplace and Z transforms, the obtained equations are solved and the relations of the inductor current and the output voltage are obtained. In the proposed method, the Laplace transform is used for determining of the general relations of the inductor current and the output voltage. Also the Z‐transform is used as a tool for determining the initial values of the inductor current and the output voltage.

Findings

The transient and the steady state response of the dc‐dc converter is analyzed by the proposed method. By using the Z‐transform, the transient response of the converter and the effect of the elements of the converter on the time constant of the transient response are investigated. In addition, the effect of the elements of the converter and the load resistance on the electrical parameters of the converter such as the output voltage ripple and the inductor current ripple are investigated.

Originality/value

The proposed method in this paper is a suitable method for mathematical modeling of dc‐dc converters. The acernote of this method is that it can be used in both transient and steady state response, analysis of the dc‐dc converters. By using the final value theorem of the Z‐transform, the steady state response of the converter is investigated. Also by using this transform, the time constants of the transient response of the converter are determined. Finally, the results of the theoretical analysis are compared with the results of simulation in PSCAD/EMTDC and also the experimental results to prove the validity of the presented subjects.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 April 2022

Taposh Kumar Roy and Md Habibullah

Predictive current control (PCC) of three-to-five-phase direct matrix converters (DMCs) is computationally expensive. For this reason, this study aims to consider a reduced number…

60

Abstract

Purpose

Predictive current control (PCC) of three-to-five-phase direct matrix converters (DMCs) is computationally expensive. For this reason, this study aims to consider a reduced number of switching states of DMC in PCC algorithm to predict the control objectives, such as output current control and input reactive power control.

Design/methodology/approach

The switching sequences which yield the voltage vectors of variable amplitude at a constant frequency in space are considered for the prediction and optimization step of PCC algorithm. For the selected voltage vectors, the phase angles of the output vectors are independent on the phase angles of the input vectors. In a three-to-five-phase DMC, there are 243 valid switching states. Among the switching states, only 91 states are considered using the aforementioned concept of variable amplitude output at a constant frequency. This reduced number of switching states simplifies the computational complexity of MPC based current control of three-to-five-phase DMC.

Findings

The computational complexity of the proposed PCC based DMC is lower than the all 243 vectors based PCC. The current total harmonic distortion, transient current response and input reactive power control for the simplified 91 vector based PCC are similar to the all 243 vectors based PCC.

Originality/value

A reduced number of switching sequence is considered for the prediction and optimization step of PCC algorithm. Hence, PCC algorithm can be sampled at a high frequency in real-time applications. Then, the performance of the PCC will be improved.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 July 2015

Amira Marzouki, Mahmoud Hamouda and Farhat Fnaiech

The purpose of this paper is to propose a new hybrid control method of pulse width modulation (PWM) active rectifiers tied to the grid through an LCL filter. The control method is…

Abstract

Purpose

The purpose of this paper is to propose a new hybrid control method of pulse width modulation (PWM) active rectifiers tied to the grid through an LCL filter. The control method is designed with the aim to achieve a perfect regulation of the dc-bus voltage; a near unity input power factor (UIPF) operation as well as a high quality of the line currents.

Design/methodology/approach

The proposed hybrid control method consists of a PI-based linear controller cascaded with a nonlinear one. The nonlinear controller (inner loop) is designed using the input-output feedback linearization (IOFL) theory. It should control both the dc-bus voltage and the input currents at the converter’s poles. The linear controller (outer loop) is devoted to control the reactive line current so as to achieve a near UIPF.

Findings

A perfect regulation of the dc-bus voltage and a near UIPF operation are achieved. Moreover, a high quality of the line currents is obtained. The robustness and effectiveness of the proposed control method have been successfully tested under variation of the dc voltage reference as well as grid and load disturbances.

Practical implications

The proposed method is useful for single-stage and two-stage grid connected photovoltaic systems, wind energy conversion, and distributed power generation systems.

Originality/value

The main novelty of this paper is the combination of linear and nonlinear controllers with the aim to control a PWM active rectifier tied to the grid through a third-order LCL filter. In the opinion, such control method has not been applied to this converter in earlier research papers. The numerical simulations carried out under normal and abnormal conditions confirm the effectiveness of the proposed approach.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 December 2000

Sedat Sünter and Jon C. Clare

This paper describes the development of closed loop control techniques for matrix converter fed induction motor drives. A prototype drive rated at 2.5kW is used to demonstrate…

1730

Abstract

This paper describes the development of closed loop control techniques for matrix converter fed induction motor drives. A prototype drive rated at 2.5kW is used to demonstrate closed loop speed control using vector control technique. Solutions to the special problems associated with the power circuit and implementation of closed loop control in the matrix converter drive are given. Experimental results demonstrating the control techniques are presented for both motoring and generating operations of the matrix converter drive in transient and steady‐state.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 November 2013

Senthilkumaran Mahadevan, Siddharth Raju and Ranganath Muthu

The high-frequency common-mode voltage introduced by power converters, using conventional modulation techniques, results in common-mode current that has the potential to cause…

Abstract

Purpose

The high-frequency common-mode voltage introduced by power converters, using conventional modulation techniques, results in common-mode current that has the potential to cause physical damage to the shaft and bearings of electric drives as well as unwanted tripping of ground fault relays in motor drives and electrical networks. The paper aims to provide a complete elimination of common mode voltage using a matrix converter (MC) with a new modulation strategy that reduces the size of the power converter system considerably. Further, a new MC topology is proposed to eliminate the common mode voltage with improved voltage transfer ratio (VTR).

Design/methodology/approach

The direct MC topology is selected, as it is the only converter topology that has the potential to eliminate common mode voltage in direct AC to AC systems. Using the rotating space vector technique, common mode voltage is eliminated but this reduces the VTR of the converter. To improve the VTR, a modified MC topology with a modified rotating space vector strategy is proposed. In addition, for improving the power factor at the input, the input current control strategy is developed.

Findings

The use of rotating space vector technique eliminates the common mode voltage even under all input abnormalities like unbalance and harmonics. By applying positive and negative rotating space vectors, input power factor control can be achieved. However, the control range is limited from unity power factor to the output power factor. It is observed that in the current controlled technique the modulation index reduces further. It is also found that there is a reduction in switching stresses of individual switches in proposed topology compared to direct MC topology.

Originality/value

In this paper, a modified rotating space vector technique is applied to the proposed converter topology for elimination of common mode voltage with an increased VTR. The topology can be used for common mode voltage elimination in existing electric drives without the need for modifying the drive system.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2009

Igor Ye. Korotyeyev and Zbigniew Fedyczak

The purpose of this paper is to introduce methods for calculating steady‐state and transient processes in a symmetrical three‐phase matrix‐reactance frequency converter (MRFC)…

Abstract

Purpose

The purpose of this paper is to introduce methods for calculating steady‐state and transient processes in a symmetrical three‐phase matrix‐reactance frequency converter (MRFC). The MRFC in question makes it possible to obtain a load output voltage much greater than the input voltage.

Design/methodology/approach

MRFCs based on a matrix‐reactance chopper are used for both frequency and voltage transformation. The processes in a MRFC system are described by nonstationary differential equations. A two‐frequency complex function method is proposed for solving non‐stationary equations in steady‐state. The method is applied to a state‐space averaged mathematical model used in the analysis of the discussed MRFC. A two‐frequency matrix transform is proposed for solving non‐stationary equations. This method can be used to find both transient and steady‐state processes.

Findings

The two‐frequency complex function method permits the reduction from 12 non‐stationary differential equations to four stationary differential equations. The two‐frequency matrix transform allows the transformation of non‐stationary differential equations to stationary ones. By using these methods descriptions of steady‐state and transient properties of buck‐boost MRFCs are obtained.

Originality/value

A new method of solving of nonstationary differential equations is presented. The method is useful for process analyses in nonstationary power electronic converters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 865