Search results

1 – 10 of 26
Article
Publication date: 17 November 2023

Behrooz Ariannezhad, Shahram Shahrooi and Mohammad Shishesaz

1) The OE-MLPG penalty meshfree method is developed to solve cracked structure.(2) Smartening the numerical meshfree method by combining the particle swarm optimization (PSO…

Abstract

Purpose

1) The OE-MLPG penalty meshfree method is developed to solve cracked structure.(2) Smartening the numerical meshfree method by combining the particle swarm optimization (PSO) optimization algorithms and Voronoi computational geometric algorithm. (3). Selection of base functions, finding optimal penalty factor and distribution of appropriate nodal points to the accuracy of calculation in the meshless local Petrov–Galekrin (MLPG) meshless method.

Design/methodology/approach

Using appropriate shape functions and distribution of nodal points in local domains and sub-domains and choosing an approximation or interpolation method has an effective role in the application of meshless methods for the analysis of computational fracture mechanics problems, especially problems with geometric discontinuity and cracks. In this research, computational geometry technique, based on the Voronoi diagram (VD) and Delaunay triangulation and PSO algorithm, are used to distribute nodal points in the sub-domain of analysis (crack line and around it on the crack plane).

Findings

By doing this process, the problems caused by too closeness of nodal points in computationally sensitive areas that exist in general methods of nodal point distribution are also solved. Comparing the effect of the number of sentences of basic functions and their order in the definition of shape functions, performing the mono-objective PSO algorithm to find the penalty factor, the coefficient, convergence, arrangement of nodal points during the three stages of VD implementation and the accuracy of the answers found indicates, the efficiency of V-E-MLPG method with Ns = 7 and ß = 0.0037–0.0075 to estimation of 3D-stress intensity factors (3D-SIFs) in computational fracture mechanics.

Originality/value

The present manuscript is a continuation of the studies (Ref. [33]) carried out by the authors, about; feasibility assessment, improvement and solution of challenges, introduction of more capacities and capabilities of the numerical MLPG method have been used. In order to validate the modeling and accuracy of calculations, the results have been compared with the findings of reference article [34] and [35].

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2023

Daniel E.S. Rodrigues, Jorge Belinha and Renato Natal Jorge

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value…

Abstract

Purpose

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value industrial sectors mainly due to parts' anisotropy (related to the deposition strategy) and residual stresses (caused by successive heating cycles). Thus, this study aims to investigate the process improvement and the optimization of the printed parts.

Design/methodology/approach

In this work, a meshless technique – the Radial Point Interpolation Method (RPIM) – is used to numerically simulate the viscoplastic extrusion process – the initial phase of the FFF. Unlike the FEM, in meshless methods, there is no pre-established relationship between the nodes so the nodal mesh will not face mesh distortions and the discretization can easily be modified by adding or removing nodes from the initial nodal mesh. The accuracy of the obtained results highlights the importance of using meshless techniques in this field.

Findings

Meshless methods show particular relevance in this topic since the nodes can be distributed to match the layer-by-layer growing condition of the printing process.

Originality/value

Using the flow formulation combined with the heat transfer formulation presented here for the first time within an in-house RPIM code, an algorithm is proposed, implemented and validated for benchmark examples.

Article
Publication date: 5 April 2024

Abhishek Kumar Singh and Krishna Mohan Singh

In the present work, we focus on developing an in-house parallel meshless local Petrov-Galerkin (MLPG) code for the analysis of heat conduction in two-dimensional and…

Abstract

Purpose

In the present work, we focus on developing an in-house parallel meshless local Petrov-Galerkin (MLPG) code for the analysis of heat conduction in two-dimensional and three-dimensional regular as well as complex geometries.

Design/methodology/approach

The parallel MLPG code has been implemented using open multi-processing (OpenMP) application programming interface (API) on the shared memory multicore CPU architecture. Numerical simulations have been performed to find the critical regions of the serial code, and an OpenMP-based parallel MLPG code is developed, considering the critical regions of the sequential code.

Findings

Based on performance parameters such as speed-up and parallel efficiency, the credibility of the parallelization procedure has been established. Maximum speed-up and parallel efficiency are 10.94 and 0.92 for regular three-dimensional geometry (343,000 nodes). Results demonstrate the suitability of parallelization for larger nodes as parallel efficiency and speed-up are more for the larger nodes.

Originality/value

Few attempts have been made in parallel implementation of the MLPG method for solving large-scale industrial problems. Although the literature suggests that message-passing interface (MPI) based parallel MLPG codes have been developed, the OpenMP model has rarely been touched. This work is an attempt at the development of OpenMP-based parallel MLPG code for the very first time.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 April 2024

Stefano Costa, Eugenio Costamagna and Paolo Di Barba

A novel method for modelling permanent magnets is investigated based on numerical approximations with rational functions. This study aims to introduce the AAA algorithm and other…

Abstract

Purpose

A novel method for modelling permanent magnets is investigated based on numerical approximations with rational functions. This study aims to introduce the AAA algorithm and other recently developed, cutting-edge mathematical tools, which provide outstandingly fast and accurate numerical computation of potentials and vector fields.

Design/methodology/approach

First, the AAA algorithm is briefly introduced along with its main variants and other advanced mathematical tools involved in the modelling. Then, the analysis of a circular Halbach array with a one-pole pair is carried out by means of the AAA-least squares method, focusing on vector potential and flux density in the bore and validating results by means of classic finite element software. Finally, the investigation is completed by a finite difference analysis.

Findings

AAA methods for field analysis prove to be strikingly fast and accurate. Results are in excellent agreement with those provided by the finite element model, and the very good agreement with those from finite differences suggests future improvements. They are also easy programming; the MATLAB code is less than 200 lines. This indicates they can provide an effective tool for rapid analysis.

Research limitations/implications

AAA methods in magnetostatics are novel, but their extension to analogous physical problems seems straightforward. Being a meshless method, it is unlikely that local non-linearities can be considered. An aspect of particular interest, left for future research, is the capability of handling inhomogeneous domains, i.e. solving general interface problems.

Originality/value

The authors use cutting-edge mathematical tools for the modelling of complex physical objects in magnetostatics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 September 2023

Chen Jiang, Ekene Paul Odibelu and Guo Zhou

This paper aims to investigate the performance of two novel numerical methods, the face-based smoothed finite element method (FS-FEM) and the edge-based smoothed finite element…

Abstract

Purpose

This paper aims to investigate the performance of two novel numerical methods, the face-based smoothed finite element method (FS-FEM) and the edge-based smoothed finite element method (ES-FEM), which employ linear tetrahedral elements, for the purpose of strength assessment of a high-speed train hollow axle.

Design/methodology/approach

The calculation of stress for the wheelset, comprising an axle and two wheels, is facilitated through the application of the European axle strength design standard. This standard assists in the implementation of loading and boundary conditions and is exemplified by the typical CRH2 high-speed train wheelset. To evaluate the performance of these two methods, a hollow cylinder cantilever beam is first used as a benchmark to compare the present methods with other existing methods. Then, the strength analysis of a real wheelset model with a hollow axle is performed using different numerical methods.

Findings

The results of deflection and stress show that FS-FEM and ES-FEM offer higher accuracy and better convergence than FEM using linear tetrahedral elements. ES-FEM exhibits a superior performance to that of FS-FEM using linear tetrahedral elements, showing accuracy and convergence close to FEM using hexahedral elements.

Originality/value

This study channels the novel methods (FS-FEM and ES-FEM) in the static stress analysis of a railway wheelset. Based on the careful testing of FS-FEM and ES-FEM, both methods hold promise as more efficient tools for the strength analysis of complex railway structures.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 March 2024

Hillal M. Elshehabey, Andaç Batur Çolak and Abdelraheem Aly

The purpose of this study is to adapt the incompressible smoothed particle hydrodynamics (ISPH) method with artificial intelligence to manage the physical problem of double…

Abstract

Purpose

The purpose of this study is to adapt the incompressible smoothed particle hydrodynamics (ISPH) method with artificial intelligence to manage the physical problem of double diffusion inside a porous L-shaped cavity including two fins.

Design/methodology/approach

The ISPH method solves the nondimensional governing equations of a physical model. The ISPH simulations are attained at different Frank–Kamenetskii number, Darcy number, coupled Soret/Dufour numbers, coupled Cattaneo–Christov heat/mass fluxes, thermal radiation parameter and nanoparticle parameter. An artificial neural network (ANN) is developed using a total of 243 data sets. The data set is optimized as 171 of the data sets were used for training the model, 36 for validation and 36 for the testing phase. The network model was trained using the Levenberg–Marquardt training algorithm.

Findings

The resulting simulations show how thermal radiation declines the temperature distribution and changes the contour of a heat capacity ratio. The temperature distribution is improved, and the velocity field is decreased by 36.77% when the coupled heat Cattaneo–Christov heat/mass fluxes are increased from 0 to 0.8. The temperature distribution is supported, and the concentration distribution is declined by an increase in Soret–Dufour numbers. A rise in Soret–Dufour numbers corresponds to a decreasing velocity field. The Frank–Kamenetskii number is useful for enhancing the velocity field and temperature distribution. A reduction in Darcy number causes a high porous struggle, which reduces nanofluid velocity and improves temperature and concentration distribution. An increase in nanoparticle concentration causes a high fluid suspension viscosity, which reduces the suspension’s velocity. With the help of the ANN, the obtained model accurately predicts the values of the Nusselt and Sherwood numbers.

Originality/value

A novel integration between the ISPH method and the ANN is adapted to handle the heat and mass transfer within a new L-shaped geometry with fins in the presence of several physical effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 November 2023

Mostafa Abbaszadeh, AliReza Bagheri Salec and Shurooq Kamel Abd Al-Khafaji

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is…

Abstract

Purpose

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is the main aim of most researchers. This paper devotes to developing a novel spectral algorithm to solve the FitzHugh–Nagumo models with space fractional derivatives.

Design/methodology/approach

The fractional derivative is defined based upon the Riesz derivative. First, a second-order finite difference formulation is used to approximate the time derivative. Then, the Jacobi spectral collocation method is employed to discrete the spatial variables. On the other hand, authors assume that the approximate solution is a linear combination of special polynomials which are obtained from the Jacobi polynomials, and also there exists Riesz fractional derivative based on the Jacobi polynomials. Also, a reduced order plan, such as proper orthogonal decomposition (POD) method, has been utilized.

Findings

A fast high-order numerical method to decrease the elapsed CPU time has been constructed for solving systems of space fractional PDEs.

Originality/value

The spectral collocation method is combined with the POD idea to solve the system of space-fractional PDEs. The numerical results are acceptable and efficient for the main mathematical model.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 September 2023

Huseyin Tunc and Murat Sari

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Abstract

Purpose

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Design/methodology/approach

The parabolic AD equations are reduced to the nonhomogeneous elliptic system of partial differential equations by utilizing the Chebyshev spectral collocation method (ChSCM) in the temporal variable. The implicit-explicit local differential transform method (IELDTM) is constructed over two- and three-dimensional meshes using continuity equations of the neighbor representations with either explicit or implicit forms in related directions. The IELDTM yields an overdetermined or underdetermined system of algebraic equations solved in the least square sense.

Findings

The IELDTM has proven to have excellent convergence properties by experimentally illustrating both h-refinement and p-refinement outcomes. A distinctive feature of the IELDTM over the existing numerical techniques is optimizing the local spatial degrees of freedom. It has been proven that the IELDTM provides more accurate results with far fewer degrees of freedom than the finite difference, finite element and spectral methods.

Originality/value

This study shows the derivation, applicability and performance of the IELDTM for solving 2D and 3D advection-diffusion equations. It has been demonstrated that the IELDTM can be a competitive numerical method for addressing high-space dimensional-parabolic partial differential equations (PDEs) arising in various fields of science and engineering. The novel ChSCM-IELDTM hybridization has been proven to have distinct advantages, such as continuous utilization of time integration and optimized formulation of spatial approximations. Furthermore, the novel ChSCM-IELDTM hybridization can be adapted to address various other types of PDEs by modifying the theoretical derivation accordingly.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2024

Mengyao Fan, Xiaojing Ma, Lin Li, Xinpeng Xiao and Can Cheng

In this paper, the complex flow evaporation process of droplet impact on the liquid film in a horizontal falling film evaporator is numerically studied based on smoothed particle…

Abstract

Purpose

In this paper, the complex flow evaporation process of droplet impact on the liquid film in a horizontal falling film evaporator is numerically studied based on smoothed particle hydrodynamics (SPH) method. The purpose of this paper is to present the mechanism of the water treatment problem of the falling film evaporation for the high salinity mine water in Xinjiang region of China.

Design/methodology/approach

To effectively characterize the phase transition problem, the particle splitting and merging techniques are introduced. And the particle absorbing layer is proposed to improve the nonphysical aggregation phenomenon caused by the continuous splitting of gas phase particles. The multiresolution model and the artificial viscosity are adopted.

Findings

The SPH model is validated qualitatively with experiment results and then applied to the evaporation of the droplet impact on the liquid film. It is shown that the larger single droplet initial velocity and the smaller single droplet initial temperature difference between the droplet and liquid film improve the liquid film evaporation. The heat transfer effect of a single droplet is preferable to that of multiple droplets.

Originality/value

A multiphase SPH model for evaporation after the droplet impact on the liquid film is developed and validated. The effects of different factors on liquid film evaporation, including single droplet initial velocity, single droplet initial temperature and multiple droplets are investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 May 2024

Lu Li and Dong-hua Zhou

This paper aims to obtain a calculation method by hand without iteration.

Abstract

Purpose

This paper aims to obtain a calculation method by hand without iteration.

Design/methodology/approach

This paper adopts strains as known quantities to solve the internal forces and deformations of the section, simplifies the deflection curve of the column and obtains nomograms that can calculate the bearing capacity and reinforcement of circular reinforced concrete (RC) columns by hand.

Findings

Nomograms include five variables: mechanical reinforcement ratio, relative normal force, dimensionless bending moment, slenderness ratio and ultimate dimensionless curvature. Nomograms corresponding to all classes of concrete have been drawn, and their dimensionless form makes them widely applicable. The calculation results of nomograms are compared and analysed with numerical calculation results, and the difference is within 5%, meeting the engineering requirements.

Originality/value

Calculating the bearing capacity of compression bending components requires considering second-order effects. Therefore, the calculation of the bearing capacity of circular RC columns requires iterative calculation, as it includes dual nonlinearity of material and geometry, and the two are coupled with each other. To calculate the bearing capacity of the section adopting ordinary concrete, it is necessary to solve the transcendental equation iteratively. For high-strength concrete, it can only be solved by numerical integration. A fast calculation method by hand is proposed in this paper.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 26