Search results

1 – 10 of 36
Article
Publication date: 14 November 2023

Mostafa Abbaszadeh, AliReza Bagheri Salec and Shurooq Kamel Abd Al-Khafaji

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is…

Abstract

Purpose

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is the main aim of most researchers. This paper devotes to developing a novel spectral algorithm to solve the FitzHughNagumo models with space fractional derivatives.

Design/methodology/approach

The fractional derivative is defined based upon the Riesz derivative. First, a second-order finite difference formulation is used to approximate the time derivative. Then, the Jacobi spectral collocation method is employed to discrete the spatial variables. On the other hand, authors assume that the approximate solution is a linear combination of special polynomials which are obtained from the Jacobi polynomials, and also there exists Riesz fractional derivative based on the Jacobi polynomials. Also, a reduced order plan, such as proper orthogonal decomposition (POD) method, has been utilized.

Findings

A fast high-order numerical method to decrease the elapsed CPU time has been constructed for solving systems of space fractional PDEs.

Originality/value

The spectral collocation method is combined with the POD idea to solve the system of space-fractional PDEs. The numerical results are acceptable and efficient for the main mathematical model.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 July 2020

Yasir Khan

In the nonlinear model of reaction–diffusion, the FitzhughNagumo equation plays a very significant role. This paper aims to generate innovative solitary solutions of the Fitzhugh

Abstract

Purpose

In the nonlinear model of reaction–diffusion, the FitzhughNagumo equation plays a very significant role. This paper aims to generate innovative solitary solutions of the FitzhughNagumo equation through the use of variational formulation.

Design/methodology/approach

The partial differential equation of FitzhughNagumo is modified by the appropriate wave transforms into a dimensionless nonlinear ordinary differential equation, which is solved by a semi-inverse variational method.

Findings

This paper uses a variational approach to the FitzhughNagumo equation developing new solitary solutions. The condition for the continuation of new solitary solutions has been met. In addition, this paper sets out the FitzhughNagumo equation fractal model and its variational principle. The findings of the solitary solutions have shown that the suggested method is very reliable and efficient. The suggested algorithm is very effective and is almost ideal for use in such problems.

Originality/value

The FitzhughNagumo equation is an important nonlinear equation for reaction–diffusion and is typically used for modeling nerve impulses transmission. The FitzhughNagumo equation is reduced to the real Newell–Whitehead equation if β = −1. This study provides researchers with an extremely useful source of information in this area.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 April 2012

Syed Tauseef Mohyud‐Din, Yasir Khan, Naeem Faraz and Ahmet Yıldırım

The purpose of this paper is to apply exp‐function method to construct generalized solitary and periodic solutions of FitzhughNagumo equation, which plays a very important role…

182

Abstract

Purpose

The purpose of this paper is to apply exp‐function method to construct generalized solitary and periodic solutions of FitzhughNagumo equation, which plays a very important role in mathematical physics and engineering sciences.

Design/methodology/approach

The authors apply exp‐function method to construct generalized solitary and periodic solutions of FitzhughNagumo equation.

Findings

Numerical results clearly indicate the reliability and efficiency of the proposed exp‐function method. The suggested algorithm is quite efficient and is practically well suited for use in these problems.

Originality/value

In this paper, the authors applied the exp‐function method to obtain solutions of the FitzhughNagumo equation and show that the exp‐function method gives more realistic solutions without disturbing the basic physics of the physical problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 October 2018

Sanjay Komala Sheshachala and Ramon Codina

This paper aims to present a finite element formulation to approximate systems of reaction–diffusion–advection equations, focusing on cases with nonlinear reaction. The…

Abstract

Purpose

This paper aims to present a finite element formulation to approximate systems of reaction–diffusion–advection equations, focusing on cases with nonlinear reaction. The formulation is based on the orthogonal sub-grid scale approach, with some simplifications that allow one to stabilize only the convective term, which is the source of potential instabilities. The space approximation is combined with finite difference time integration and a Newton–Raphson linearization of the reactive term. Some numerical examples show the accuracy of the resulting formulation. Applications using classical nonlinear reaction models in population dynamics are also provided, showing the robustness of the approach proposed.

Design/methodology/approach

A stabilized finite element method for advection–diffusion–reaction equations to the problem on nonlinear reaction is adapted. The formulation designed has been implemented in a computer code. Numerical examples are run to show the accuracy and robustness of the formulation.

Findings

The stabilized finite element method from which the authors depart can be adapted to problems with nonlinear reaction. The resulting method is very robust and accurate. The framework developed is applicable to several problems of interest by themselves, such as the predator–prey model.

Originality/value

A stabilized finite element method to problems with nonlinear reaction has been extended. Original contributions are the design of the stabilization parameters and the linearization of the problem. The application examples, apart from demonstrating the validity of the numerical model, help to get insight in the system of nonlinear equations being solved.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2011

Mehdi Dehghan, Jalil Manafian Heris and Abbas Saadatmandi

The purpose of this paper is to use He's Exp‐function method (EFM) to construct solitary and soliton solutions of the nonlinear evolution equation.

Abstract

Purpose

The purpose of this paper is to use He's Exp‐function method (EFM) to construct solitary and soliton solutions of the nonlinear evolution equation.

Design/methodology/approach

This technique is straightforward and simple to use and is a powerful method to overcome some difficulties in the nonlinear problems.

Findings

This method is developed for searching exact traveling wave solutions of the nonlinear partial differential equations. The EFM presents a wider applicability for handling nonlinear wave equations.

Originality/value

The paper shows that EFM, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving nonlinear evolution equations. Application of EFM to FitzhughNagumo equation illustrates its effectiveness.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2018

Omar Abu Arqub

The purpose of this study is to introduce the reproducing kernel algorithm for treating classes of time-fractional partial differential equations subject to Robin boundary…

416

Abstract

Purpose

The purpose of this study is to introduce the reproducing kernel algorithm for treating classes of time-fractional partial differential equations subject to Robin boundary conditions with parameters derivative arising in fluid flows, fluid dynamics, groundwater hydrology, conservation of energy, heat conduction and electric circuit.

Design/methodology/approach

The method provides appropriate representation of the solutions in convergent series formula with accurately computable components. This representation is given in the W(Ω) and H(Ω) inner product spaces, while the computation of the required grid points relies on the R(y,s) (x, t) and r(y,s) (x, t) reproducing kernel functions.

Findings

Numerical simulation with different order derivatives degree is done including linear and nonlinear terms that are acquired by interrupting the n-term of the exact solutions. Computational results showed that the proposed algorithm is competitive in terms of the quality of the solutions found and is very valid for solving such time-fractional models.

Research limitations/implications

Future work includes the application of the reproducing kernel algorithm to highly nonlinear time-fractional partial differential equations such as those arising in single and multiphase flows. The results will be published in forthcoming papers.

Practical implications

The study included a description of fundamental reproducing kernel algorithm and the concepts of convergence, and error behavior for the reproducing kernel algorithm solvers. Results obtained by the proposed algorithm are found to outperform in terms of accuracy, generality and applicability.

Social implications

Developing analytical and numerical methods for the solutions of time-fractional partial differential equations is a very important task owing to their practical interest.

Originality/value

This study, for the first time, presents reproducing kernel algorithm for obtaining the numerical solutions of some certain classes of Robin time-fractional partial differential equations. An efficient construction is provided to obtain the numerical solutions for the equations, along with an existence proof of the exact solutions based upon the reproducing kernel theory.

Article
Publication date: 7 January 2019

Mian Ilyas Ahmad, Peter Benner and Lihong Feng

The purpose of this paper is to propose an interpolation-based projection framework for model reduction of quadratic-bilinear systems. The approach constructs projection matrices…

Abstract

Purpose

The purpose of this paper is to propose an interpolation-based projection framework for model reduction of quadratic-bilinear systems. The approach constructs projection matrices from the bilinear part of the original quadratic-bilinear descriptor system and uses these matrices to project the original system.

Design/methodology/approach

The projection matrices are constructed by viewing the bilinear system as a linear parametric system, where the input associated with the bilinear part is treated as a parameter. The advantage of this approach is that the projection matrices can be constructed reliably by using an a posteriori error bound for linear parametric systems. The use of the error bound allows us to select a good choice of interpolation points and parameter samples for the construction of the projection matrices by using a greedy-type framework.

Findings

The results are compared with the standard quadratic-bilinear projection methods and it is observed that the approximations through the proposed method are comparable to the standard method but at a lower computational cost (offline time).

Originality/value

In addition to the proposed model order reduction framework, the authors extend the one-sided moment matching parametric model order reduction (PMOR) method to a two-sided method that doubles the number of moments matched in the PMOR method.

Article
Publication date: 3 August 2012

Mehdi Dehghan, Jalil Manafian and Abbas Saadatmandi

Rosenau‐Hyman equation was discovered as a simplified model to study the role of nonlinear dispersion on pattern formation in liquid drops. Also, this equation has important roles…

Abstract

Purpose

Rosenau‐Hyman equation was discovered as a simplified model to study the role of nonlinear dispersion on pattern formation in liquid drops. Also, this equation has important roles in the modelling of various problems in physics and engineering. The purpose of this paper is to present the solution of Rosenau‐Hyman equation.

Design/methodology/approach

This paper aims to present the solution of the Rosenau‐Hyman equation by means of semi‐analytical approaches which are based on the homotopy perturbation method (HPM), variational iteration method (VIM) and Adomian decomposition method (ADM).

Findings

These techniques reduce the volume of calculations by not requiring discretization of the variables, linearization or small perturbations. Numerical solutions obtained by these methods are compared with the exact solutions, revealing that the obtained solutions are of high accuracy. These results reveal that the proposed methods are very effective and simple to perform.

Originality/value

Efficient techniques are developed to find the solution of an important equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Content available

Abstract

Details

Kybernetes, vol. 41 no. 7/8
Type: Research Article
ISSN: 0368-492X

Article
Publication date: 8 June 2010

A. Ravishankar Rao and Guillermo A. Cecchi

The purpose of this paper is to extend an analysis presented in earlier work which investigated the dynamical behavior of a network of oscillatory units described by the amplitude…

Abstract

Purpose

The purpose of this paper is to extend an analysis presented in earlier work which investigated the dynamical behavior of a network of oscillatory units described by the amplitude of and phase of oscillations, and to present an objective function that can be successfully applied to multi‐layer networks.

Design/methodology/approach

In this paper, an objective function is presented that can be successfully applied to multi‐layer networks. The behavior of the objective function is explained through its ability to achieve a sparse representation of the inputs in complex‐valued space.

Findings

It is found that if the activity of each network unit is represented by a phasor in the complex plane, then sparsity is achieved when there is maximal phase separation in the complex plane. Increasing the spread of feedback connections is shown to improve segmentation performance significantly but does not affect separation performance. This enables a quantitative approach to characterizing and understanding cortical function.

Originality/value

The formulation of the multi‐layer objective function and the interpretation of its behavior through sparsity in complex space are novel contributions of this paper.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 3 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

1 – 10 of 36