Search results

1 – 10 of 16
Article
Publication date: 20 September 2018

Don Liu, Hui-Li Han and Yong-Lai Zheng

This paper aims to present a high-order algorithm implemented with the modal spectral element method and simulations of three-dimensional thermal convective flows by using the…

Abstract

Purpose

This paper aims to present a high-order algorithm implemented with the modal spectral element method and simulations of three-dimensional thermal convective flows by using the full viscous dissipation function in the energy equation. Three benchmark problems were solved to validate the algorithm with exact or theoretical solutions. The heated rotating sphere at different temperatures inside a cold planar Poiseuille flow was simulated parametrically at varied angular velocities with positive and negative rotations.

Design/methodology/approach

The fourth-order stiffly stable schemes were implemented and tested for time integration. To provide the hp-refinement and spatial resolution enhancement, a modal spectral element method using hierarchical basis functions was used to solve governing equations in a three-dimensional space.

Findings

It was found that the direction of rotation of the heated sphere has totally different effects on drag, lateral force and torque evaluated on surfaces of the sphere and walls. It was further concluded that the angular velocity of the heated sphere has more influence on the wall normal velocity gradient than on the wall normal temperature gradients and therefore, more influence on the viscous dissipation than on the thermal dissipation.

Research limitations/implications

This paper concerns incompressible fluid flow at constant properties with up to medium temperature variations in the absence of thermal radiation and ignoring the pressure work.

Practical implications

This paper contributes a viable high-order algorithm in time and space for modeling convective heat transfer involving an internal heated rotating sphere with the effect of viscous heating.

Social implications

Results of this paper could provide reference for related topics such as enhanced heat transfer forced convection involving rotating spheres and viscous thermal effect.

Originality/value

The merits include resolving viscous dissipation and thermal diffusion in stationary and rotating boundary layers with both h- and p-type refinements, visualizing the viscous heating effect with the full viscous dissipation function in the energy equation and modeling the forced advection around a rotating sphere with varied positive and negative angular velocities subject to a shear flow.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 September 2023

Huseyin Tunc and Murat Sari

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Abstract

Purpose

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Design/methodology/approach

The parabolic AD equations are reduced to the nonhomogeneous elliptic system of partial differential equations by utilizing the Chebyshev spectral collocation method (ChSCM) in the temporal variable. The implicit-explicit local differential transform method (IELDTM) is constructed over two- and three-dimensional meshes using continuity equations of the neighbor representations with either explicit or implicit forms in related directions. The IELDTM yields an overdetermined or underdetermined system of algebraic equations solved in the least square sense.

Findings

The IELDTM has proven to have excellent convergence properties by experimentally illustrating both h-refinement and p-refinement outcomes. A distinctive feature of the IELDTM over the existing numerical techniques is optimizing the local spatial degrees of freedom. It has been proven that the IELDTM provides more accurate results with far fewer degrees of freedom than the finite difference, finite element and spectral methods.

Originality/value

This study shows the derivation, applicability and performance of the IELDTM for solving 2D and 3D advection-diffusion equations. It has been demonstrated that the IELDTM can be a competitive numerical method for addressing high-space dimensional-parabolic partial differential equations (PDEs) arising in various fields of science and engineering. The novel ChSCM-IELDTM hybridization has been proven to have distinct advantages, such as continuous utilization of time integration and optimized formulation of spatial approximations. Furthermore, the novel ChSCM-IELDTM hybridization can be adapted to address various other types of PDEs by modifying the theoretical derivation accordingly.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 1997

A. Hernández, J. Albizuri, M.B.G. Ajuria and M.V. Hormaza

Proposes an automatic adaptive meshing scheme. Error in strain energy is directly obtained through strain energy density function (SED). Versatility of this function, in…

Abstract

Proposes an automatic adaptive meshing scheme. Error in strain energy is directly obtained through strain energy density function (SED). Versatility of this function, in comparison with that of others, is looked at in detail. Mesh enrichment method consists of a series of h‐refinement steps and concludes with a single p‐refinement step. Adds that an examination of the accuracy of the element used in the refinement procedure is made. This scheme has been implemented in ZATILAN, a FE code developed in the Department of the Mechanical Engineering of the University of the Basque Country.

Details

Engineering Computations, vol. 14 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1997

Pinhas Z. Bar‐Yoseph and Eduard Moses

Deals with the formulation and application of temporal and spatial spectral element approximations for the solution of convection‐diffusion problems. Proposes a new high‐order…

Abstract

Deals with the formulation and application of temporal and spatial spectral element approximations for the solution of convection‐diffusion problems. Proposes a new high‐order splitting space‐time spectral element method which exploits space‐time discontinuous Galerkin for the first hyperbolic substep and space continuous‐time discontinuous Galerkin for the second parabolic substep. Analyses this method and presents its characteristics in terms of accuracy and stability. Also investigates a subcycling technique, in which several hyperbolic substeps are taken for each parabolic substep; a technique which enables fast, cost‐effective time integration with little loss of accuracy. Demonstrates, by a numerical comparison with other coupled and splitting space‐time spectral element methods, that the proposed method exhibits significant improvements in accuracy, stability and computational efficiency, which suggests that this method is a potential alternative to existing schemes. Describes several areas for future research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 7 no. 2/3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 September 2023

Yazhou Wang, Dehong Luo, Xuelin Zhang, Zhitao Wang, Hui Chen, Xiaobo Zhang, Ningning Xie, Shengwei Mei, Xiaodai Xue, Tong Zhang and Kumar K. Tamma

The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF…

Abstract

Purpose

The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF) algorithms with variable time step size, and the adaptive time-stepping in BDF algorithms is demonstrated for efficient time-dependent simulations in fluid flow and heat transfer.

Design/methodology/approach

The Lagrange interpolation polynomial is used to predict the time derivative, and then the accurate primary result is obtained by the Gauss integral, which is applied to evaluate the local error. Not only the generalized formula of the proposed error estimator is presented but also the specific expression for the widely applied BDF1/2/3 is illustrated. Two essential executable MATLAB functions to implement the proposed error estimator are appended for practical applications. Then, the adaptive time-stepping is demonstrated based on the newly proposed error estimator for BDF algorithms.

Findings

The validation tests show that the newly proposed error estimator is accurate such that the effectivity index is always close to unity for both linear and nonlinear problems, and it avoids under/overestimation of the exact local error. The applications for fluid dynamics and coupled fluid flow and heat transfer problems depict the advantage of adaptive time-stepping based on the proposed error estimator for time-dependent simulations.

Originality/value

In contrast to existing error estimators for BDF algorithms, the present work is more accurate for the local error estimation, and it can be readily extended to practical applications in engineering with a few changes to existing codes, contributing to efficient time-dependent simulations in fluid flow and heat transfer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2003

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics…

1207

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2005

Joachim Schöberl and Sabine Zaglmayr

The goal of the presented work is the efficient computation of Maxwell boundary and eigenvalue problems using high order H(curl) finite elements.

1229

Abstract

Purpose

The goal of the presented work is the efficient computation of Maxwell boundary and eigenvalue problems using high order H(curl) finite elements.

Design/methodology/approach

Discusses a systematic strategy for the realization of arbitrary order hierarchic H(curl)‐conforming finite elements for triangular and tetrahedral element geometries. The shape functions are classified as lowest order Nédélec, higher‐order edge‐based, face‐based (only in 3D) and element‐based ones.

Findings

Our new shape functions provide not only the global complete sequence property but also local complete sequence properties for each edge‐, face‐, and element‐block. This local property allows an arbitrary variable choice of the polynomial degree for each edge, face, and element. A second advantage of this construction is that simple block‐diagonal preconditioning gets efficient. Our high order shape functions contain gradient shape functions explicitly. In the case of a magnetostatic boundary value problem, the gradient basis functions can be skipped, which reduces the problem size, and improves the condition number.

Originality/value

Successfully applies the new high order elements for a 3D magnetostatic boundary value problem, and a Maxwell eigenvalue problem showing severe edge and corner singularities.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 August 2023

James Elgy, Paul D. Ledger, John L. Davidson, Toykan Özdeğer and Anthony J. Peyton

The ability to characterise highly conducting objects, that may also be highly magnetic, by the complex symmetric rank–2 magnetic polarizability tensor (MPT) is important for…

Abstract

Purpose

The ability to characterise highly conducting objects, that may also be highly magnetic, by the complex symmetric rank–2 magnetic polarizability tensor (MPT) is important for metal detection applications including discriminating between threat and non-threat objects in security screening, identifying unexploded anti-personnel landmines and ordnance and identifying metals of high commercial value in scrap sorting. Many everyday non-threat items have both a large electrical conductivity and a magnetic behaviour, which, for sufficiently weak fields and the frequencies of interest, can be modelled by a high relative magnetic permeability. This paper aims to discuss the aforementioned idea.

Design/methodology/approach

The numerical simulation of the MPT for everyday non-threat highly conducting magnetic objects over a broad range of frequencies is challenging due to the resulting thin skin depths. The authors address this by employing higher order edge finite element discretisations based on unstructured meshes of tetrahedral elements with the addition of thin layers of prismatic elements. Furthermore, computer aided design (CAD) geometrical models of the non-threat and threat object are often not available and, instead, the authors extract the geometrical features of an object from an imaging procedure.

Findings

The authors obtain accurate numerical MPT characterisations that are in close agreement with experimental measurements for realistic physical objects. The assessment of uncertainty shows the impact of geometrical and material parameter uncertainties on the computational results.

Originality/value

The authors present novel computations and measurements of MPT characterisations of realistic objects made of magnetic materials. A novel assessment of uncertainty in the numerical predictions of MPT characterisations for uncertain geometry and material parameters is included.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 April 2014

Izian Abd. Karim, Chun Hean Lee, Antonio J. Gil and Javier Bonet

– The purpose of this paper is to present a new stabilised low-order finite element methodology for large strain fast dynamics.

1742

Abstract

Purpose

The purpose of this paper is to present a new stabilised low-order finite element methodology for large strain fast dynamics.

Design/methodology/approach

The numerical technique describing the motion is formulated upon the mixed set of first-order hyperbolic conservation laws already presented by Lee et al. (2013) where the main variables are the linear momentum, the deformation gradient tensor and the total energy. The mixed formulation is discretised using the standard explicit two-step Taylor-Galerkin (2TG) approach, which has been successfully employed in computational fluid dynamics (CFD). Unfortunately, the results display non-physical spurious (or hourglassing) modes, leading to the breakdown of the numerical scheme. For this reason, the 2TG methodology is further improved by means of two ingredients, namely a curl-free projection of the deformation gradient tensor and the inclusion of an additional stiffness stabilisation term.

Findings

A series of numerical examples are carried out drawing key comparisons between the proposed formulation and some other recently published numerical techniques.

Originality/value

Both velocities (or displacements) and stresses display the same rate of convergence, which proves ideal in the case of industrial applications where low-order discretisations tend to be preferred. The enhancements introduced in this paper enable the use of linear triangular (or bilinear quadrilateral) elements in two dimensional nearly incompressible dynamics applications without locking difficulties. In addition, an artificial viscosity term has been added into the formulation to eliminate the appearance of spurious oscillations in the vicinity of sharp spatial gradients induced by shocks.

Details

Engineering Computations, vol. 31 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 May 2019

Kumar Kaushik Ranjan, Sandeep Kumar, Amit Tyagi and Ambuj Sharma

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative…

Abstract

Purpose

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative method are necessary to obtain a high-accuracy solution. The purpose of this paper is to provide an optimal adaptive scheme based on second-generation finite element wavelets for the solution of non-linear variational inequality of the contact problem.

Design/methodology/approach

To generate an elementary multi-resolution mesh, the authors used hierarchical bases (HB) composed of Lagrange finite element interpolation functions. These HB functions are customized using second-generation wavelet techniques for a fast convergence rate. At each step of the algorithm, the active set method along with mesh adaptation is used for solving the constrained minimization problem of contact case. Wavelet coefficients-based error indicators are used, and computation is focused on mesh zones with a high error indication. The authors take advantage of the wavelet transform to develop a parameter-free adaptive scheme to generate an appropriate and optimal mesh.

Findings

Adaptive wavelet Galerkin scheme (AWGS), a newly developed method for multi-scale mesh adaptivity in this work, is a combination of the second-generation wavelet transform and finite element method and significantly improves the accuracy of the results without approximating an additional problem of error estimation equations. A comparative study is performed taking a solution on a highly refined mesh and results are generated using AWGS.

Practical implications

The proposed adaptive technique can be utilized in the simulation of mechanical and biomechanical structures where multiple bodies come into contact with each other. The algorithm of the method is easy to implement and found to be successful in producing a sufficiently accurate solution with relatively less number of mesh nodes.

Originality/value

Although many error estimation techniques have been developed over the past several years to solve contact problems adaptively, because of boundary non-linearity development, a reliable error estimator needs further investigation. The present study attempts to resolve this problem without having to recompute the entire solution on a new mesh.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 16