Search results

1 – 10 of over 6000
Article
Publication date: 13 March 2017

Yuxiang Chen, Mutellip Ahmat and Zhong-tang Huo

Irregular windy loads are loaded for a wind turbine. This paper aims to determine the form of gear failure and the working life of the gear system by assessing the dynamic…

Abstract

Purpose

Irregular windy loads are loaded for a wind turbine. This paper aims to determine the form of gear failure and the working life of the gear system by assessing the dynamic strength of gears and dynamic stress distribution.

Design/methodology/approach

The helical planetary gear system of the wind turbine growth rate gearbox was investigated, and while a variety of clearance and friction gear meshing processes were considered in the planetary gear system, a finite element model was built based on the contact–impact dynamics theory, solved using the explicit algorithm. The impact stress of the sun gear of the planetary gear system was calculated under different loads. An integrated planetary gear meshing stiffness, and the error of system dynamic transmission error were investigated when the planetary gear meshes with the sun or ring gears.

Findings

The load has little effect on the sun gear of the impact stress which was known. The varying stiffness is different while the planetary gear meshes with the sun and ring gears. There were differences between the planetary gear system and the planetary gear, and with load, the planetary gear transmission error decreases.

Originality/value

This study will provide basis knowledge for the planetary gear system.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 April 2024

Jungang Wang, Xincheng Bi and Ruina Mo

The electromechanical planetary transmission system has the advantages of high transmission power and fast running speed, which is one of the important development directions in…

Abstract

Purpose

The electromechanical planetary transmission system has the advantages of high transmission power and fast running speed, which is one of the important development directions in the future. However, during the operation of the electromechanical planetary transmission system, friction and other factors will lead to an increase in gear temperature and thermal deformation, which will affect the transmission performance of the system, and it is of great significance to study the influence of the temperature effect on the nonlinear dynamics of the electromechanical planetary system.

Design/methodology/approach

The effects of temperature change, motor speed, time-varying meshing stiffness, meshing damping ratio and error amplitude on the nonlinear dynamic characteristics of electromechanical planetary systems are studied by using bifurcation diagrams, time-domain diagrams, phase diagrams, Poincaré cross-sectional diagrams, spectra, etc.

Findings

The results show that when the temperature rise is less than 70 °C, the system will exhibit chaotic motion. When the motor speed is greater than 900r/min, the system enters a chaotic state. The changes in time-varying meshing stiffness, meshing damping ratio, and error amplitude will also make the system exhibit abundant bifurcation characteristics.

Originality/value

Based on the principle of thermal deformation, taking into account the temperature effect and nonlinear parameters, including time-varying meshing stiffness and tooth side clearance as well as comprehensive errors, a dynamic model of the electromechanical planetary gear system was established.

Details

Engineering Computations, vol. 41 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 August 2022

Mohamad Syazwan Zafwan Mohamad Suffian, Syahiir Kamil and Ahmad Kamal Ariffin

Advanced computational methods help to solve complex engineering problems via finite-element simulation. However, uncertainties during the process occurred due to the nature of…

Abstract

Purpose

Advanced computational methods help to solve complex engineering problems via finite-element simulation. However, uncertainties during the process occurred due to the nature of geometry, material properties, loading, and boundary conditions. These inaccuracies affect the accuracy of results obtained from the analysis. This paper aims to analyse the uncertainty parameters of a finite element model in Excel-Visual Basic Application (VBA) by applying a random simulation method.

Design/methodology/approach

This study focuses on a finite element model with a different mesh. Young's Modulus, E, Poisson's ratio, and load, L are the uncertainty input parameters considered random variables.

Findings

Results obtained proved that the finite element model with the most nodes and elements has better solution convergence.

Originality/value

Random simulation method is a tool to perform uncertainty analysis of a finite element model.

Details

International Journal of Structural Integrity, vol. 13 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 October 2023

Lili Zhu, Jinxu Bai, Xu Liang and Maojin Jia

The purpose of this paper is to calculate the meshing stiffness of nutation face gear considering the roughness, establish the calculation method of time-varying meshing stiffness…

Abstract

Purpose

The purpose of this paper is to calculate the meshing stiffness of nutation face gear considering the roughness, establish the calculation method of time-varying meshing stiffness of rough tooth surface and analyze the influence of roughness, load and other factors on the meshing stiffness of tooth surface.

Design/methodology/approach

The Weierstrass–Mandelbrot (W-M) function in the Majumdar–Bhushan model is used to characterize the rough contact line of the tooth surface, the normal height and radius of the micro convex body are calculated and the contact flexibility of the contact point of the tooth surface is obtained. The contact flexibility and the bending shear deformation flexibility obtained previously are substituted into the improved deformation compatibility equation for iterative calculation, and the time-varying meshing stiffness of the nutation face gear considering the roughness is obtained.

Findings

Compared with ABAQUS finite element simulation results, it is found that the meshing stiffness curve of rough tooth surface is more gentle than that of smooth tooth surface, the meshing stiffness value is smaller and the meshing stiffness change is smaller at the position where the number of gear teeth coincide changes.

Originality/value

In the process of calculating contact deformation, the fractal theory W-M function is used to characterize the contact line of the rough nutation face gear, and the deformation coordination condition considering roughness is improved. Therefore, the method of time-varying meshing stiffness considering roughness can obtain more accurate results, which provides theory and data for the subsequent dynamics analysis of the nutation face gear transmission.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 March 2020

Yan Xia, Yi Wan, Hongwei Wang and Zhanqiang Liu

As the transmission component of a locomotive, the traction gear pair system has a direct effect on the stability and reliability of the whole machine. This paper aims to provide…

Abstract

Purpose

As the transmission component of a locomotive, the traction gear pair system has a direct effect on the stability and reliability of the whole machine. This paper aims to provide a detailed dynamic analysis for the traction system under internal and external excitations by numerical simulation.

Design/methodology/approach

A non-linear dynamic model of locomotive traction gear pair system is proposed, where the comprehensive time-varying meshing stiffness is obtained through the Ishikawa formula method and verified by the energy method, and then the sliding friction excitation is analyzed based on the location of the contact line. Meantime, the adhesion torque is constructed as a function of the adhesion-slip feature between wheelset and rail. Through Runge–Kutta numerical method, the system responses are studied with varying bifurcation parameters consisting of exciting frequency, load fluctuation, gear backlash, error fluctuation and friction coefficient. The dynamic behaviors of the system are analyzed and discussed from bifurcation diagram, time history, spectrum plot, phase portrait, Poincaré map and three-dimensional frequency spectrum.

Findings

The analysis results reveal that as control parameters vary the system experiences complex transition among a diverse range of motion states such as one-periodic, multi-periodic and chaotic motions. Specifically, the significant difference in system bifurcation characteristics can be observed under different adhesion conditions. The suitable gear backlash and error fluctuation can avoid the chaotic motion, and thus, reduce the vibration amplitude of the system. Similarly, the increasing friction coefficient can also suppress the unstable state and improve the stability of the system.

Originality/value

The numerical results may provide a systemic understanding of dynamic characteristics and present some available information to design and optimize the transmission performance of the locomotive traction system.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2001

Jaroslav Mackerle

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing

1902

Abstract

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing and remeshing, parallel processing in the finite element modelling, etc. are also included. The bibliography at the end of this paper contains 1,727 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1990 and 2001.

Details

Engineering Computations, vol. 18 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 January 2024

Kai Xu, Ying Xiao and Xudong Cheng

The purpose of this study is to investigate the effects of nanoadditive lubricants on the vibration and noise characteristics of helical gears compared with conventional…

Abstract

Purpose

The purpose of this study is to investigate the effects of nanoadditive lubricants on the vibration and noise characteristics of helical gears compared with conventional lubricants. The experiment aims to analyze whether nanoadditive lubricants can effectively reduce gear vibration and noise under different speeds and loads. It also analyzes the sensitivity of the vibration reduction to load and speed changes. In addition, it compares the axial and radial vibration reduction effects. The goal is to explore the application of nanolubricants for vibration damping and noise reduction in gear transmissions. The results provide a basis for further research on nanolubricant effects under high-speed conditions.

Design/methodology/approach

Helical gears of 20CrMnTi were lubricated with conventional oil and nanoadditive oils. An open helical gearbox with spray lubrication was tested under different speeds (200–500 rpm) and loads (20–100 N·m). Gear noise was measured by a sound level meter. Axial and radial vibrations were detected using an M+P VibRunner system and fast Fourier transform analysis. Vibration spectrums under conventional and nanolubrication were compared. Gear tooth surfaces were observed after testing. The experiment aimed to analyze the noise and vibration reduction effects of nanoadditive lubricants on helical gears and the sensitivity to load and speed.

Findings

The key findings are that nanoadditive lubricants significantly reduce the axial and radial vibrations of helical gears under low-speed conditions compared with conventional lubricants, with a more pronounced effect on axial vibrations. The vibration reduction is more sensitive to rotational speed than load. At the same load and speed, nanolubrication reduces noise by 2%–5% versus conventional lubrication. Nanoparticles change the friction from sliding to rolling and compensate for meshing errors, leading to smoother vibrations. The nanolubricants alter the gear tooth surfaces and optimize the microtopography. The results provide a basis for exploring nanolubricant effects under high speeds.

Originality/value

The originality and value of this work is the experimental analysis of the effects of nanoadditive lubricants on the vibration and noise characteristics of hard tooth surface helical gears, which has rarely been studied before. The comparative results under different speeds and loads provide new insights into the vibration damping capabilities of nanolubricants in gear transmissions. The findings reveal the higher sensitivity to rotational speed versus load and the differences in axial and radial vibration reduction. The exploration of nanolubricant effects on gear tribological performance and surface interactions provides a valuable reference for further research, especially under higher speed conditions closer to real applications.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0220/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 August 2021

Yong-Hua Li, Chi Zhang, Hao Yin, Yang Cao and Xiaoning Bai

This paper proposes an improved fatigue life analysis method for optimal design of electric multiple units (EMU) gear, which aims at defects of traditional Miner fatigue…

169

Abstract

Purpose

This paper proposes an improved fatigue life analysis method for optimal design of electric multiple units (EMU) gear, which aims at defects of traditional Miner fatigue cumulative damage theory.

Design/methodology/approach

A fatigue life analysis method by modifying SN curve and considering material difference is presented, which improves the fatigue life of EMU gear based on shape modification optimization. A corrected method for stress amplitude, average stress and SN curve is proposed, which considers low stress cycle, material difference and other factors. The fatigue life prediction of EMU gear is carried out by corrected SN curve and transient dynamic analysis. Moreover, the gear modification technology combined with intelligent optimization method is adopted to investigate the approach of fatigue life analysis and improvement.

Findings

The results show that it is more corresponded to engineering practice by using the improved fatigue life analysis method than the traditional method. The function of stress and modification amount established by response surface method meets the requirement of precision. The fatigue life of EMU gear based on the intelligent algorithm for seeking the optimal modification amount is significantly improved compared with that before the modification.

Originality/value

The traditional fatigue life analysis method does not consider the influence of working condition and material. The life prediction results by using the method proposed in this paper are more accurate and ensure the safety of the people in the EMU. At the same time, the combination of intelligent algorithm and gear modification can improve the fatigue life of gear on the basis of accurate prediction, which is of great significance to the portability of EMU maintenance.

Details

International Journal of Structural Integrity, vol. 12 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 September 2024

Pranay Vaggu and S.K. Panigrahi

The effect of spinning has been studied and analysed for different projectile shapes such as ogive, blunt, cylindrical and conical by using numerical simulations.

Abstract

Purpose

The effect of spinning has been studied and analysed for different projectile shapes such as ogive, blunt, cylindrical and conical by using numerical simulations.

Design/methodology/approach

Projectile shape is one of the important parameters in the penetration mechanism. The present study deals with the failure mechanisms and ballistic evaluation for different nose-shaped projectiles undergoing normal impact with spinning. Materials characterization has been made by Johnson–Cook strength and failure models, and LS-DYNA simulations are used to analyse the impact of steel projectiles on an Al 7075-T651 target at different impact velocities under normal impact conditions. The experimental results from the literature are used to validate the model. Based on the residual velocity values, the Recht-Ipson model has been curve-fitted and approximate ballistic limit velocity has been evaluated. The approximated ballistic limit velocity is found to be 3.4% higher than the experimental results and compared well with the experimental results. Subsequently, the validated model conditions are used to study and analyse the effect of spinning for different nose-shaped projectiles undergoing normal impact conditions.

Findings

The ductile hole failure is observed for the ogive nose projectile, petals are formed and fragmented for the conical projectile, and plugging is observed for cylindrical projectiles. A Recht-Ipson curve is presented for each spinning condition for each projectile shape and the ballistic limit has been evaluated for each condition.

Originality/value

The proposed research outputs are original and innovative and, have a lot of importance in defence applications, particularly in arms and ammunition.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 6000