Search results

1 – 10 of 88
Article
Publication date: 3 October 2022

Xiaofeng Li, Xiaoxue Liu, Xiangwei Li, Weidong He and Hanfei Guo

The purpose of this paper is to propose an improved method which can shorten the calculation time and improve the calculation efficiency under the premise of ensuring the…

Abstract

Purpose

The purpose of this paper is to propose an improved method which can shorten the calculation time and improve the calculation efficiency under the premise of ensuring the calculation accuracy for calculating the response of dynamic systems with periodic time-varying characteristics.

Design/methodology/approach

An improved method is proposed based on Runge–Kutta method according to the composition characteristics of the state space matrix and the external load vector formed by the reduction of the dynamic equation of the periodic time-varying system. The recursive scheme of the holistic matrix of the system using the Runge–Kutta method is improved to be the sub-block matrix that is divided into the upper and lower parts to reduce the calculation steps and the occupied computer memory.

Findings

The calculation time consumption is reduced to a certain extent about 10–35% by changing the synthesis method of the time-varying matrix of the dynamics system, and the method proposed of paper consumes 43–75% less calculation time in total than the original Runge–Kutta method without affecting the calculation accuracy. When the ode45 command that implements the Runge–Kutta method in the MATLAB software used to solve the system dynamics equation include the time variable which cannot provide its specific analytic function form, so the time variable value corresponding to the solution time needs to be determined by the interpolation method, which causes the calculation efficiency of the ode45 command to be substantially reduced.

Originality/value

The proposed method can be applied to solve dynamic systems with periodic time-varying characteristics, and can consume less calculation time than the original Runge–Kutta method without affecting the calculation accuracy, especially the superiority of the improved method of this paper can be better demonstrated when the degree of freedom of the periodic time-varying dynamics system is greater.

Details

Engineering Computations, vol. 39 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 October 2023

Lili Zhu, Jinxu Bai, Xu Liang and Maojin Jia

The purpose of this paper is to calculate the meshing stiffness of nutation face gear considering the roughness, establish the calculation method of time-varying meshing stiffness

Abstract

Purpose

The purpose of this paper is to calculate the meshing stiffness of nutation face gear considering the roughness, establish the calculation method of time-varying meshing stiffness of rough tooth surface and analyze the influence of roughness, load and other factors on the meshing stiffness of tooth surface.

Design/methodology/approach

The Weierstrass–Mandelbrot (W-M) function in the Majumdar–Bhushan model is used to characterize the rough contact line of the tooth surface, the normal height and radius of the micro convex body are calculated and the contact flexibility of the contact point of the tooth surface is obtained. The contact flexibility and the bending shear deformation flexibility obtained previously are substituted into the improved deformation compatibility equation for iterative calculation, and the time-varying meshing stiffness of the nutation face gear considering the roughness is obtained.

Findings

Compared with ABAQUS finite element simulation results, it is found that the meshing stiffness curve of rough tooth surface is more gentle than that of smooth tooth surface, the meshing stiffness value is smaller and the meshing stiffness change is smaller at the position where the number of gear teeth coincide changes.

Originality/value

In the process of calculating contact deformation, the fractal theory W-M function is used to characterize the contact line of the rough nutation face gear, and the deformation coordination condition considering roughness is improved. Therefore, the method of time-varying meshing stiffness considering roughness can obtain more accurate results, which provides theory and data for the subsequent dynamics analysis of the nutation face gear transmission.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 April 2024

Jungang Wang, Xincheng Bi and Ruina Mo

The electromechanical planetary transmission system has the advantages of high transmission power and fast running speed, which is one of the important development directions in…

Abstract

Purpose

The electromechanical planetary transmission system has the advantages of high transmission power and fast running speed, which is one of the important development directions in the future. However, during the operation of the electromechanical planetary transmission system, friction and other factors will lead to an increase in gear temperature and thermal deformation, which will affect the transmission performance of the system, and it is of great significance to study the influence of the temperature effect on the nonlinear dynamics of the electromechanical planetary system.

Design/methodology/approach

The effects of temperature change, motor speed, time-varying meshing stiffness, meshing damping ratio and error amplitude on the nonlinear dynamic characteristics of electromechanical planetary systems are studied by using bifurcation diagrams, time-domain diagrams, phase diagrams, Poincaré cross-sectional diagrams, spectra, etc.

Findings

The results show that when the temperature rise is less than 70 °C, the system will exhibit chaotic motion. When the motor speed is greater than 900r/min, the system enters a chaotic state. The changes in time-varying meshing stiffness, meshing damping ratio, and error amplitude will also make the system exhibit abundant bifurcation characteristics.

Originality/value

Based on the principle of thermal deformation, taking into account the temperature effect and nonlinear parameters, including time-varying meshing stiffness and tooth side clearance as well as comprehensive errors, a dynamic model of the electromechanical planetary gear system was established.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 September 2020

Guangxin Wang, Lili Zhu and Peng Wang

The purpose of this paper is to obtain the single-tooth stiffness, single-tooth time-varying meshing stiffness and comprehensive meshing stiffness of the internal and external…

Abstract

Purpose

The purpose of this paper is to obtain the single-tooth stiffness, single-tooth time-varying meshing stiffness and comprehensive meshing stiffness of the internal and external face gears and to analyze the influence of the modulus, pressure angle and tooth width of each face gear on the single-tooth stiffness of the gear in nutation face gear transmission.

Design/methodology/approach

From the point of view of material mechanics, the gear teeth of nutation face gear are simplified as spacial variable cross-section beams. The shear deformation of gear teeth, the bending deformation of tooth root and the additional elastic deformation caused by the base deformation are gotten by simplified trapezoidal section method, thus the stiffness of nutation face gear teeth can be obtained. The comparison with finite element method results verifies the rationality of simplified trapezoidal section method for calculating the tooth stiffness of nutation face gear.

Findings

The variation of stiffness of internal and external face gears along the meshing line and tooth height in nutation face gear transmission is studied, and the variation laws of single tooth stiffness, single-tooth-pair mesh stiffness and single tooth time-varying meshing stiffness of nutation face gear teeth are obtained.

Originality/value

Nutation face gear transmission is a new type of transmission. The stiffness of face gear teeth is analyzed, and the variation rules of single tooth stiffness, single-tooth-pair mesh stiffness and single tooth time-varying meshing stiffness of nutation face gear teeth are obtained, which not only enriches the research of nutation face gear transmission but also has important guiding significance for the application of nutation face gear in engineering practice.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 March 2020

Yan Xia, Yi Wan, Hongwei Wang and Zhanqiang Liu

As the transmission component of a locomotive, the traction gear pair system has a direct effect on the stability and reliability of the whole machine. This paper aims to provide…

Abstract

Purpose

As the transmission component of a locomotive, the traction gear pair system has a direct effect on the stability and reliability of the whole machine. This paper aims to provide a detailed dynamic analysis for the traction system under internal and external excitations by numerical simulation.

Design/methodology/approach

A non-linear dynamic model of locomotive traction gear pair system is proposed, where the comprehensive time-varying meshing stiffness is obtained through the Ishikawa formula method and verified by the energy method, and then the sliding friction excitation is analyzed based on the location of the contact line. Meantime, the adhesion torque is constructed as a function of the adhesion-slip feature between wheelset and rail. Through Runge–Kutta numerical method, the system responses are studied with varying bifurcation parameters consisting of exciting frequency, load fluctuation, gear backlash, error fluctuation and friction coefficient. The dynamic behaviors of the system are analyzed and discussed from bifurcation diagram, time history, spectrum plot, phase portrait, Poincaré map and three-dimensional frequency spectrum.

Findings

The analysis results reveal that as control parameters vary the system experiences complex transition among a diverse range of motion states such as one-periodic, multi-periodic and chaotic motions. Specifically, the significant difference in system bifurcation characteristics can be observed under different adhesion conditions. The suitable gear backlash and error fluctuation can avoid the chaotic motion, and thus, reduce the vibration amplitude of the system. Similarly, the increasing friction coefficient can also suppress the unstable state and improve the stability of the system.

Originality/value

The numerical results may provide a systemic understanding of dynamic characteristics and present some available information to design and optimize the transmission performance of the locomotive traction system.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 November 2020

Duncai Lei, Xiannian Kong, Siyu Chen, Jinyuan Tang and Zehua Hu

The purpose of this paper is to investigate the dynamic responses of a spur gear pair with unloaded static transmission error (STE) excitation numerically and experimentally and…

326

Abstract

Purpose

The purpose of this paper is to investigate the dynamic responses of a spur gear pair with unloaded static transmission error (STE) excitation numerically and experimentally and the influences of the system factors including mesh stiffness, error excitation and torque on the dynamic transmission error (DTE).

Design/methodology/approach

A simple lumped parameters dynamic model of a gear pair considering time-varying mesh stiffness, backlash and unloaded STE excitation is developed. The STE is calculated from the measured tooth profile deviation under the unloaded condition. A four-square gear test rig is designed to measure and analyze the DTE and vibration responses of the gear pair. The dynamic responses of the gear transmission are studied numerically and experimentally.

Findings

The predicted numerical DTE matches well with the experimental results. When the real unloaded STE excitation without any approximation is used, the dynamic response is dominated by the mesh frequency and its high order harmonic components, which may not be result caused by the assembling error. The sub-harmonic and super-harmonic resonant behaviors are excited because of the high order harmonic components of STE. It will not certainly prevent the separations of mesh teeth when the gear pair is under the condition of high speed and heavy load.

Originality/value

This study helps to improve the modeling method of the dynamic analysis of spur gear transmission and provide some reference for the understanding of the influence of mesh stiffness, STE excitation and system torque on the vibration behaviors.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 November 2021

Junguo Wang, Zhaoyuan Yao, M.F. Hassan and Yongxiang Zhao

The paper is devoted to presenting a systematic investigation on the mechanical model and nonlinear dynamic characteristics of spur gear system with and without input shaft crack.

Abstract

Purpose

The paper is devoted to presenting a systematic investigation on the mechanical model and nonlinear dynamic characteristics of spur gear system with and without input shaft crack.

Design/methodology/approach

Considering the backlash, load-distribution, time-varying meshing stiffness and sliding friction, the modelling of a 5DOF gear system is proposed. Likewise, stiffness and damping models under elastohydrodynamic lubrication are developed, and sliding friction between gear pair is also outlined. In particular, a cracked input shaft which affects the support stiffness is presented, and breathing crack in keyway is adopted. On this basis, the dynamic responses of a gear system with and without input shaft crack are examined using numerical method, and some classical response diagrams are given, illustrating the effect of the important parameters on the gear system.

Findings

Dynamic simulation demonstrates that there exist periodic, quasi-periodic and chaotic motions in the gear system, and rational speed of the gear pair has noteworthy effects on vibration characteristic. Besides, comparison between healthy and cracked condition of input shaft indicates that occurring of crack convert periodic motion to quasi-periodic or chaotic motion.

Originality/value

The results give an understanding of the operating conditions under which undesirable dynamic behavior occurs, and provide some useful information to design and diagnose such gear system with crack fault.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 November 2021

Nan Gao, Shiyu Wang and Muhammad Asad Ur Rehman Bajwa

Gear transmissions are widely utilized in practice. This paper aims to uncouple the crack feature from the cracked time-varying mesh stiffness (TVMS) and investigate the effects…

189

Abstract

Purpose

Gear transmissions are widely utilized in practice. This paper aims to uncouple the crack feature from the cracked time-varying mesh stiffness (TVMS) and investigate the effects of the crack on the nonlinear dynamics of a spur gear pair.

Design/methodology/approach

An approximate method to simulate the cracked TVMS is proposed by using an amplitude modulation function. The ratio of mesh stiffness loss is introduced to estimate the TVMS with different crack depths and angles. The dynamic responses are obtained by solving a torsional model which takes the non-loaded static transmission error, the backlash and the cracked TVMS into account. By using the bifurcation diagram, the largest Lyapunov exponent (LLE) and dynamic mesh force, the influences of crack on nonlinear behaviors are examined. The dynamic characteristics are identified from the phase diagram, Poincaré map, dynamic mesh force, time series and FFT spectra.

Findings

The comparison between the healthy and cracked gear pairs indicates that the crack affects the system motions, such as the obvious changes of impact force and unpredictable instability. Besides, the additive and difference combination frequencies can be found in periodic-1 and -2 motions, but they are covered in periodic-3 and chaotic motions. Deeper crack is an important determinant of the nonlinear behaviors at a higher speed.

Originality/value

The research provides an interesting perspective on cracked TVMS and reveals the connection between crack and nonlinear behaviors of the gear pairs.

Details

Engineering Computations, vol. 39 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 March 2017

Yuxiang Chen, Mutellip Ahmat and Zhong-tang Huo

Irregular windy loads are loaded for a wind turbine. This paper aims to determine the form of gear failure and the working life of the gear system by assessing the dynamic…

Abstract

Purpose

Irregular windy loads are loaded for a wind turbine. This paper aims to determine the form of gear failure and the working life of the gear system by assessing the dynamic strength of gears and dynamic stress distribution.

Design/methodology/approach

The helical planetary gear system of the wind turbine growth rate gearbox was investigated, and while a variety of clearance and friction gear meshing processes were considered in the planetary gear system, a finite element model was built based on the contact–impact dynamics theory, solved using the explicit algorithm. The impact stress of the sun gear of the planetary gear system was calculated under different loads. An integrated planetary gear meshing stiffness, and the error of system dynamic transmission error were investigated when the planetary gear meshes with the sun or ring gears.

Findings

The load has little effect on the sun gear of the impact stress which was known. The varying stiffness is different while the planetary gear meshes with the sun and ring gears. There were differences between the planetary gear system and the planetary gear, and with load, the planetary gear transmission error decreases.

Originality/value

This study will provide basis knowledge for the planetary gear system.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 April 2020

Huahan Liu, Qiang Dong and Wei Jiang

The purpose of this paper is to present a new methodology, used for dynamic reliability analysis of a gear transmission system (GTS) of wind turbine (WT), which could be used for…

Abstract

Purpose

The purpose of this paper is to present a new methodology, used for dynamic reliability analysis of a gear transmission system (GTS) of wind turbine (WT), which could be used for assembly decision-making of the parts with errors to improve the GTS’s performance.

Design/methodology/approach

This paper involves the dynamic and dynamic reliability analysis of a GTS. The history curves of dynamic responses of the parts are obtained with the developed gear-bearing coupling dynamic model considering the random errors, failure dependency and random load. Then, the surrogate models of the mean and standard deviation of responses are presented by statistics, rain flow counting method and corrected-partial least squares regression response surface method. Further, a novel dynamic reliability model based on the maximum extreme theory, a theory of sequential statistics, equivalent principles and the inverse transform theory of random variable sampling, is developed to overcome the limitations of traditional methods.

Findings

The dynamic reliability of GTS considering the different impact factors are evaluated. The proposed reliability methodology not only overcomes the limitations associated with traditional approaches but also provides good guidance to assembly the parts in a GTS to its best performance.

Originality/value

Instead of constant errors, this paper considers the randomness of the impact factors to develop the dynamic reliability model. Further, instead of the limitation of the normal distribution of the random parameters in the traditional method, the proposed methodology can deal with the problems with non-normal distribution parameters, which is more suitable for the real engineering problems.

Details

Engineering Computations, vol. 37 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 88