Search results

1 – 10 of over 2000
Open Access
Article
Publication date: 22 August 2024

Sean McConnell, David Tanner and Kyriakos I. Kourousis

Productivity is often cited as a key barrier to the adoption of metal laser-based powder bed fusion (ML-PBF) technology for mass production. Newer generations of this technology…

Abstract

Purpose

Productivity is often cited as a key barrier to the adoption of metal laser-based powder bed fusion (ML-PBF) technology for mass production. Newer generations of this technology work to overcome this by introducing more lasers or dramatically different processing techniques. Current generation ML-PBF machines are typically not capable of taking on additional hardware to maximise productivity due to inherent design limitations. Thus, any increases to be found in this generation of machines need to be implemented through design or adjusting how the machine currently processes the material. The purpose of this paper is to identify the most beneficial existing methodologies for the optimisation of productivity in existing ML-PBF equipment so that current users have a framework upon which they can improve their processes.

Design/methodology/approach

The review method used here is the preferred reporting items for systematic review and meta-analysis (PRISMA). This is complemented by using an artificial intelligence-assisted literature review tool known as Elicit. Scopus, WEEE, Web of Science and Semantic Scholar databases were searched for articles using specific keywords and Boolean operators.

Findings

The PRIMSA and Elicit processes resulted in 51 papers that met the criteria. Of these, 24 indicated that by using a design of experiment approach, processing parameters could be created that would increase productivity. The other themes identified include scan strategy (11), surface alteration (11), changing of layer heights (17), artificial neural networks (3) and altering of the material (5). Due to the nature of the studies, quantifying the effect of these themes on productivity was not always possible. However, studies citing altering layer heights and processing parameters indicated the greatest quantifiable increase in productivity with values between 10% and 252% cited. The literature, though not always explicit, depicts several avenues for the improvement of productivity for current-generation ML-PBF machines.

Originality/value

This systematic literature review provides trends and themes that aim to influence and support future research directions for maximising the productivity of the ML-PBF machines.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 25 April 2024

Ilse Valenzuela Matus, Jorge Lino Alves, Joaquim Góis, Paulo Vaz-Pires and Augusto Barata da Rocha

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process…

1386

Abstract

Purpose

The purpose of this paper is to review cases of artificial reefs built through additive manufacturing (AM) technologies and analyse their ecological goals, fabrication process, materials, structural design features and implementation location to determine predominant parameters, environmental impacts, advantages, and limitations.

Design/methodology/approach

The review analysed 16 cases of artificial reefs from both temperate and tropical regions. These were categorised based on the AM process used, the mortar material used (crucial for biological applications), the structural design features and the location of implementation. These parameters are assessed to determine how effectively the designs meet the stipulated ecological goals, how AM technologies demonstrate their potential in comparison to conventional methods and the preference locations of these implementations.

Findings

The overview revealed that the dominant artificial reef implementation occurs in the Mediterranean and Atlantic Seas, both accounting for 24%. The remaining cases were in the Australian Sea (20%), the South Asia Sea (12%), the Persian Gulf and the Pacific Ocean, both with 8%, and the Indian Sea with 4% of all the cases studied. It was concluded that fused filament fabrication, binder jetting and material extrusion represent the main AM processes used to build artificial reefs. Cementitious materials, ceramics, polymers and geopolymer formulations were used, incorporating aggregates from mineral residues, biological wastes and pozzolan materials, to reduce environmental impacts, promote the circular economy and be more beneficial for marine ecosystems. The evaluation ranking assessed how well their design and materials align with their ecological goals, demonstrating that five cases were ranked with high effectiveness, ten projects with moderate effectiveness and one case with low effectiveness.

Originality/value

AM represents an innovative method for marine restoration and management. It offers a rapid prototyping technique for design validation and enables the creation of highly complex shapes for habitat diversification while incorporating a diverse range of materials to benefit environmental and marine species’ habitats.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 July 2024

Ugur Mecid Dilberoglu, Ulas Yaman and Melik Dolen

This study aims to thoroughly examine the milling process applied to fused filament fabrication (FFF) parts. The primary objective is to identify the key variables in creating…

Abstract

Purpose

This study aims to thoroughly examine the milling process applied to fused filament fabrication (FFF) parts. The primary objective is to identify the key variables in creating smooth surfaces on FFF specimens and establish trends about specific parameters.

Design/methodology/approach

In this study, PLA and ABS samples fabricated by FFF are subjected to side milling in several experiments. Achievable surface quality is studied in relation to material properties, milling parameters, tooling and macrostructure. The surface finish is quantified using profile measurements of the processed surfaces. The study classifies the created chips into categories that can be used as criteria for the anticipated quality. Spectral analysis is used to examine the various surface formation modes. Thermal monitoring is used to track chip formation and surface temperature changes during the milling process.

Findings

This study reveals that effective heat dissipation through proper chip formation is vital for maintaining high surface quality. Recommended methodology demands using a tool with a substantial flute volume, using high positive rake and clearance angles and optimizing the feed-per-tooth and cutting speed. Disregarding these guidelines may cause the surface temperature to surpass the material’s glass transition, resulting in inferior quality characterized by viscous folding. For FFF thermoplastics, optimal milling can bring the average surface roughness down to the micron level.

Originality/value

This research contributes to the field by providing valuable guidance for achieving superior results in milling FFF parts. This study includes a concise summary of the theoretically relevant insights, presents verification of the key factors by qualitative analysis and offers optimal milling parameters for 3D-printed thermoplastics based on systematic experiments.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 20 August 2024

Jianyong Liu, Xueke Luo, Long Li, Fangyuan Liu, Chuanyang Qiu, Xinghao Fan, Haoran Dong, Ruobing Li and Jiahao Liu

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This…

Abstract

Purpose

Utilizing electrical discharge machining (EDM) to process micro-holes in superalloys may lead to the formation of remelting layers and micro-cracks on the machined surface. This work proposes a method of composite processing of EDM and ultrasonic vibration drilling for machining precision micro-holes in complex positions of superalloys.

Design/methodology/approach

A six-axis computer numerical control (CNC) machine tool was developed, whose software control system adopted a real-time control architecture that integrates electrical discharge and ultrasonic vibration drilling. Among them, the CNC system software was developed based on Windows + RTX architecture, which could process the real-time processing state received by the hardware terminal and adjust the processing state. Based on the SoC (System on Chip) technology, an architecture for a pulse generator was developed. The circuit of the pulse generator was designed and implemented. Additionally, a composite mechanical system was engineered for both drilling and EDM. Two sets of control boards were designed for the hardware terminal. One set was the EDM discharge control board, which detected the discharge state and provided the pulse waveform for turning on the transistor. The other was a relay control card based on STM32, which could meet the switch between EDM and ultrasonic vibration, and used the Modbus protocol to communicate with the machining control software.

Findings

The mechanical structure of the designed composite machine tool can effectively avoid interference between the EDM spindle and the drilling spindle. The removal rate of the remelting layer on 1.5 mm single crystal superalloys after composite processing can reach over 90%. The average processing time per millimeter was 55 s, and the measured inner surface roughness of the hole was less than 1.6 µm, which realized the  micro-hole machining without remelting layer, heat affected zone and micro-cracks in the single crystal superalloy.

Originality/value

The test results proved that the key techniques developed in this paper were suite for micro-hole machining of special materials.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 28 August 2024

Raphael Timothy Steffen, Michael Robert Tucker, Francesco Sillani, Denis Schütz and Markus Bambach

For additive manufacturing (AM) through laser-based powder bed fusion of polymers (PBF-LB/P), accurate characterization of powder flowability is vital for achieving high-quality…

Abstract

Purpose

For additive manufacturing (AM) through laser-based powder bed fusion of polymers (PBF-LB/P), accurate characterization of powder flowability is vital for achieving high-quality parts. However, accurately characterizing feedstock flowability presents challenges because of a lack of consensus on which tests to perform and the diverse forces and mechanisms involved. This study aims to undertake a thorough investigation into the flowability of eight feedstock materials for PBF-LB/P at different temperatures using various techniques.

Design/methodology/approach

For ambient temperature assessments, established metrics such as avalanche angle and Hausner ratio, along with the approximated flow function coefficient (FFCapp), are used. The study then focuses on the influence of elevated temperatures representative of in-process conditions. FFCapp and differential scanning calorimetry (DSC) are performed and analyzed, followed by a correlation analysis as a holistic approach to identify key aspects for flowability. Furthermore, two feedstock materials are compared with a previous study to connect the present findings to PBF-LB/P processing.

Findings

The study revealed intrinsic material properties such as mechanical softening near the melting point to become significant. This partially explains why certain powders with poor ambient temperature flowability are consistently demonstrated to produce high-quality parts. FFCapp and thermal characterization through DSC are identified as critical metrics for optimizing feedstock material characteristics across temperature ranges.

Originality/value

Previous studies emphasized specific characterizations of feedstock material at ambient temperature, presented a limited materials selection or focused on metrics such as shape factors. In contrast, this study addresses a partially understood aspect by examining the critical role of temperature in governing feedstock material flowability. It advocates for the inclusion of temperature variables in flowability analyses to closely resemble the PBF-LB/P process, which can be applied to material design, selection and process optimization.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 July 2024

Arthur de Carvalho Cruzeiro, Leonardo Santana, Danay Manzo Jaime, Sílvia Ramoa, Jorge Lino Alves and Guilherme Mariz de Oliveira Barra

This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating…

Abstract

Purpose

This study aims to evaluate in situ oxidative polymerization of aniline (Ani) as a post-processing method to promote extrusion-based 3D printed parts, made from insulating polymers, to components with functional properties, including electrical conductivity and chemical sensitivity.

Design/methodology/approach

Extrusion-based 3D printed parts of polyethylene terephthalate modified with glycol (PETG) and polypropylene (PP) were coated in an aqueous acid solution via in situ oxidative polymerization of Ani. First, the feedstocks were characterized. Densely printed samples were then used to assess the adhesion of polyaniline (PAni) and electrical conductivity on printed parts. The best feedstock candidate for PAni coating was selected for further analysis. Last, a Taguchi methodology was used to evaluate the influence of printing parameters on the coating of porous samples. Analysis of variance and Tukey post hoc test were used to identify the best levels for each parameter.

Findings

Colorimetry measurements showed significant color shifts in PP samples and no shifts in PETG samples upon pullout testing. The incorporation of PAni content and electrical conductivity were, respectively, 41% and 571% higher for PETG in comparison to PP. Upon coating, the surface energy of both materials decreased. Additionally, the dynamic mechanical analysis test showed minimal influence of PAni over the dynamic mechanical properties of PETG. The parametric study indicated that only layer thickness and infill pattern had a significant influence on PAni incorporation and electrical conductivity of coated porous samples.

Originality/value

Current literature reports difficulties in incorporating PAni without affecting dimensional precision and feedstock stability. In situ, oxidative polymerization of Ani could overcome these limitations. However, its use as a functional post-processing of extrusion-based printed parts is a novelty.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 July 2023

Shashi Prakash Dwivedi

The quantum of metal particle waste generation in manufacturing industries is posing a great concern for the environment. The iron forging industries generate a huge amount of…

Abstract

Purpose

The quantum of metal particle waste generation in manufacturing industries is posing a great concern for the environment. The iron forging industries generate a huge amount of grinding sludge (GS) waste, which is disposed into the earth. The accumulation of this waste in dump yards causes an increase in soil and air pollution levels.

Design/methodology/approach

In the current investigation, an effort was made to use this waste GS for the progress of aluminum-based composite. To maintain uniform distribution of reinforcing material, the friction stir processing technique was used.

Findings

The characterization based on the SEM image of the Al/GS composite revealed that uniform dispersal of reinforcement content can be attained in a single tool pass. Number of grains/inch was approximately 2,402. XRD of GS powder confirmed the presence of SiO2, Fe2O3, Al2O3 and CaO phases. These phases proved GS to be a better reinforcement with aluminum alloy. Tensile strength and hardness were significantly improved in comparison to the aluminum alloy. Thermal expansion and corrosion weight loss were evaluated to observe the influence of GS addition.

Originality/value

The studies proved that the use of GS as reinforcement material can help in curbing the menace of soil pollution to a large extent.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 August 2024

Nur Hidayah Musa, Nurainaa Natasya Mazlan, Shahir Mohd Yusuf, Farah Liana Binti Mohd Redzuan, Nur Azmah Nordin and Saiful Amri Mazlan

Material extrusion (ME) is a low-cost additive manufacturing (AM) technique that is capable of producing metallic components using desktop 3D printers through a three-step…

Abstract

Purpose

Material extrusion (ME) is a low-cost additive manufacturing (AM) technique that is capable of producing metallic components using desktop 3D printers through a three-step printing, debinding and sintering process to obtain fully dense metallic parts. However, research on ME AM, specifically fused filament fabrication (FFF) of 316L SS, has mainly focused on improving densification and mechanical properties during the post-printing stage; sintering parameters. Therefore, this study aims to investigate the effect of varying processing parameters during the initial printing stage, specifically nozzle temperatures, Tn (190°C–300°C) on the relative density, porosity, microstructures and microhardness of FFF 3D printed 316L SS.

Design/methodology/approach

Cube samples (25 x 25 x 25 mm) are printed via a low-cost Artillery Sidewinder X1 3D printer using a 316L SS filament comprising of metal-polymer binder mix by varying nozzle temperatures from 190 to 300°C. All samples are subjected to thermal debinding and sintering processes. The relative density of the sintered parts is determined based on the Archimedes Principle. Microscopy and analytical methods are conducted to evaluate the microstructures and phase compositions. Vickers microhardness (HV) measurements are used to assess the mechanical property. Finally, the correlation between relative density, microstructures and hardness is also reported.

Findings

The results from this study suggest a suitable temperature range of 195°C–205°C for the successful printing of 316L SS green parts with high dimensional accuracy. On the other hand, Tn = 200°C yields the highest relative density (97.6%) and highest hardness (292HV) in the sintered part, owing to the lowest porosity content (<3%) and the combination of the finest average grain size (∼47 µm) and the presence of Cr23C6 precipitates. However, increasing Tn = 205°C results in increased porosity percentage and grain coarsening, thereby reducing the HV values. Overall, these outcomes suggest that the microstructures and properties of sintered 316L SS parts fabricated by FFF AM could be significantly influenced even by adjusting the processing parameters during the initial printing stage only.

Originality/value

This paper addresses the gap by investigating the impact of initial FFF 3D printing parameters, particularly nozzle temperature, on the microstructures and physical characteristics of sintered FFF 316L SS parts. This study provides an understanding of the correlation between nozzle temperature and various factors such as dimensional integrity, densification level, microstructure and hardness of the fabricated parts.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 July 2024

Cho-Pei Jiang, Masrurotin Masrurotin, Maziar Ramezani, Alvian Toto Wibisono, Ehsan Toyserkani and Wojciech Macek

Fused deposition modeling (FDM) nowadays offers promising future applications for fabricating not only thermoplastic-based polymers but also composite PLA/Metal alloy materials…

Abstract

Purpose

Fused deposition modeling (FDM) nowadays offers promising future applications for fabricating not only thermoplastic-based polymers but also composite PLA/Metal alloy materials, this capability bridges the need for metallic components in complex manufacturing processes. The research is to explore the manufacturability of multi-metal parts by printing green bodies of PLA/multi-metal objects, carrying these objects to the debinding process and varying the sintering parameters.

Design/methodology/approach

Three different sample types of SS316L part, Inconel 718 part and bimetallic composite of SS316L/IN718 were effectively printed. After the debinding process, the printed parts (green bodies), were isothermally sintered in non-vacuum chamber to investigate the fusion behavior at four different temperatures in the range of 1270 °C−1530 °C for 12 h and slowly cooled in the furnace. All samples was assessed including geometrical assessment to measure the shrinkage, characterization (XRD) to identify the crystallinity of the compound and microstructural evolution (Optical microscopy and SEM) to explore the porosity and morphology on the surface. The hardness of each sample types was measured and compared. The sintering parameter was optimized according to the microstructural evaluation on the interface of SS316L/IN718 composite.

Findings

The investigation indicated that the de-binding of all the samples was effectively succeeded through less weight until 16% when the PLA of green bodies was successfully evaporated. The morphology result shows evidence of an effective sintering process to have the grain boundaries in all samples, while multi-metal parts clearly displayed the interface. Furthermore, the result of XRD shows the tendency of lower crystallinity in SS316L parts, whilst IN718 has a high crystallinity. The optimal sintering temperature for SS316L/IN718 parts is 1500 °C. The hardness test concludes that the higher sintering temperature gives a higher hardness result.

Originality/value

This study highlights the successful sintering of a bimetallic stainless steel 316 L/Inconel 718 composite, fabricated via dual-nozzle fused deposition modeling, in a non-vacuum environment at 1500 °C. The resulting material displayed maximum hardness values of 872 HV for SS316L and 755.5 HV for IN718, with both materials exhibiting excellent fusion without any cracks.

Details

Rapid Prototyping Journal, vol. 30 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 August 2024

Mustafa Kuntoğlu, Emin Salur, Munish Kumar Gupta, Saad Waqar, Natalia Szczotkarz, Govind Vashishtha, Mehmet Erdi Korkmaz and Grzegorz M. Krolczyk

The nickel-based alloys Inconel 625 and Inconel 718 stand out due to their high strength and corrosion resistance in important industries like aerospace, aviation and automotive…

Abstract

Purpose

The nickel-based alloys Inconel 625 and Inconel 718 stand out due to their high strength and corrosion resistance in important industries like aerospace, aviation and automotive. Even though they are widely used, current techniques of producing materials that are difficult to cut pose several problems from a financial, ecological and even health perspective. To handle these problems and acquire improved mechanical and structural qualities, laser powder bed fusion (LPBF) has been widely used as one of the most essential additive manufacturing techniques. The purpose of this article is to focus on the state of the art on LPBF parts of Inconel 625 and Inconel 718 for microstructure, mechanical behavior and postprocessing.

Design/methodology/approach

The mechanical behavior of LPBF-fabricated Inconel is described, including hardness, surface morphology and wear, as well as the influence of fabrication orientation on surface quality, biocompatibility and resultant mechanical properties, particularly tensile strength, fatigue performance and tribological behaviors.

Findings

The postprocessing techniques such as thermal treatments, polishing techniques for surface enhancement, mechanical and laser-induced peening and physical operations are summarized.

Originality/value

The highlighted topic presents the critical aspects of the advantages and challenges of the LPBF parts produced by Inconel 718 and 625, which can be a guideline for manufacturers and academia in practical applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 2000