Search results

1 – 10 of 567
Article
Publication date: 17 April 2024

Zul-Atfi Ismail

This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes. Maintenance…

Abstract

Purpose

This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes. Maintenance planning and management are integral components of the construction sector, serving the broader purpose of post-construction activities and processes. However, as Precast Concrete (PC) construction projects increase in scale and complexity, the interconnections among these activities and processes become apparent, leading to planning and performance management challenges. These challenges specifically affect the monitoring of façade components for corrective and preventive maintenance actions.

Design/methodology/approach

The concept of maintenance planning for façades, along with the main features of information and communication technology tools and techniques using building information modeling technology, is grounded in the analysis of numerous literature reviews in PC building scenarios.

Findings

This research focuses on an integrated system designed to analyze information and support decision-making in maintenance planning for PC buildings. It is based on robust data collection regarding concrete façades' failures and causes. The system aims to provide appropriate planning decisions and minimize the risk of façade failures throughout the building's lifetime.

Originality/value

The study concludes that implementing a research framework to develop such a system can significantly enhance the effectiveness of maintenance planning for façade design, construction and maintenance operations.

Details

Facilities , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-2772

Keywords

Open Access
Article
Publication date: 25 December 2023

Anna Trubetskaya, Alan Ryan, Daryl John Powell and Connor Moore

Output from the Irish Dairy Industry has grown rapidly since the abolition of quotas in 2015, with processors investing heavily in capacity expansion to deal with the extra milk…

Abstract

Purpose

Output from the Irish Dairy Industry has grown rapidly since the abolition of quotas in 2015, with processors investing heavily in capacity expansion to deal with the extra milk volumes. Further capacity gains may be achieved by extending the processing season into the winter, a key enabler for which being the reduction of duration of the winter maintenance overhaul period. This paper aims to investigate if Lean Six Sigma tools and techniques can be used to enhance operational maintenance performance, thereby releasing additional processing capacity.

Design/methodology/approach

Combining the Six-Sigma Define, Measure, Analyse, Improve, Control (DMAIC) methodology and the structured approach of Turnaround Maintenance (TAM) widely used in process industries creates a novel hybrid model that promises substantial improvement in maintenance overhaul execution. This paper presents a case study applying the DMAIC/TAM model to Ireland’s largest dairy processing site to optimise the annual maintenance shutdown. The objective was to deliver a 30% reduction in the duration of the overhaul, enabling an extension of the processing season.

Findings

Application of the DMAIC/TAM hybrid resulted in process enhancements, employee engagement and a clear roadmap for the operations team. Project goals were delivered, and original objectives exceeded, resulting in €8.9m additional value to the business and a reduction of 36% in the duration of the overhaul.

Practical implications

The results demonstrate that the model provides a structure that promotes systematic working and a continuous improvement focus that can have substantial benefits for wider industry. Opportunities for further model refinement were identified and will enhance performance in subsequent overhauls.

Originality/value

To the best of the authors’ knowledge, this is the first time that the structure and tools of DMAIC and TAM have been combined into a hybrid methodology and applied in an Irish industrial setting.

Details

International Journal of Lean Six Sigma, vol. 15 no. 8
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 23 January 2024

Chinedu Onyeme and Kapila Liyanage

This study investigates the integration of Industry 4.0 (I4.0) technologies with condition-based maintenance (CBM) in upstream oil and gas (O&G) operations, focussing on…

67

Abstract

Purpose

This study investigates the integration of Industry 4.0 (I4.0) technologies with condition-based maintenance (CBM) in upstream oil and gas (O&G) operations, focussing on developing countries like Nigeria. The research identifies barriers to this integration and suggests solutions, intending to provide practical insights for improving operational efficiency in the O&G sector.

Design/methodology/approach

The study commenced with an exhaustive review of extant literature to identify existing barriers to I4.0 implementation and contextualise the study. Subsequent to this foundational step, primary data are gathered through the administration of carefully constructed questionnaires targeted at professionals specialised in maintenance within the upstream O&G sector. A semi-structured interview was also conducted to elicit more nuanced, contextual insights from these professionals. Analytically, the collected data were subjected to descriptive statistical methods for summarisation and interpretation with a measurement model to define the relationships between observed variables and latent construct. Moreover, the Relative Importance Index was utilised to systematically prioritise and rank the key barriers to I4.0 integration to CBM within the upstream O&G upstream sector.

Findings

The most ranked obstacles in integrating I4.0 technologies to the CBM strategy in the O&G industry are lack of budget and finance, limited engineering and technological resources, lack of support from executives and leaders of the organisations and lack of competence. Even though the journey of digitalisation has commenced in the O&G industry, there are limited studies in this area.

Originality/value

The study serves as both an academic cornerstone and a practical guide for the operational integration of I4.0 technologies within Nigeria's O&G upstream sector. Specifically, it provides an exhaustive analysis of the obstacles impeding effective incorporation into CBM practices. Additionally, the study contributes actionable insights for industry stakeholders to enhance overall performance and achieve key performance indices (KPIs).

Details

International Journal of Quality & Reliability Management, vol. 41 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 14 December 2022

Bryan Pieterse, Kofi Agyekum, Patrick Manu, Saeed Reza Mohandes, Clara Cheung and Akilu Yunusa-Kaltungo

Major maintenance projects are often regarded as maintenance activities regardless of the projects' complexity and scale. Consequently, very scarce research attention has hitherto…

Abstract

Purpose

Major maintenance projects are often regarded as maintenance activities regardless of the projects' complexity and scale. Consequently, very scarce research attention has hitherto been paid to the critical skills required when undertaking these projects. More specifically, the body of relevant knowledge is deprived of a study focusing on maintenance projects within the energy sector. In view of this shortcoming, this research aims to examine the critical project management (PM) skills required to deliver major maintenance projects within the energy sector.

Design/methodology/approach

Based on a quantitative research strategy, this study addressed the knowledge gap through a cross-sectional survey of professionals involved in the delivery of major maintenance projects in the United Kingdom's (UK) energy sector. Data obtained were analyzed via descriptive (e.g. frequencies, mean and standard deviation [SD]) and inferential statistical analyses (One sample t-test and exploratory factor analysis (EFA)).

Findings

Out of the 45 PM skills identified in the literature and examined by the respondents, the results obtained from the One sample t-test (based on p (1-tailed) = 0.05) showed that 37 were considered to be at least “important,” accounting for 80.4% of all the skills identified. EFA revealed a clustering of the PM skills items into seven components: “skills related to work scheduling and coordination”; “communication, risk, safety and stakeholder management skills”; “quality assurance skills”; “people management skills”; “skills related to forecasting scope and duration of outage”; “implementation of processes and time management skills” and “technical/engineering skills and experience pertaining to the outage and local site knowledge.”

Originality/value

This study has identified and contributed to the limited state-of-the-art skills project managers must possess to manage major maintenance projects in the energy sector successfully. The findings would be useful to organizations within the energy sector in ensuring that the organizations have suitable personnel in place to deliver major maintenance projects on the organizations' assets.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 December 2022

Ahmed Mohammed, Tarek Zayed, Fuzhan Nasiri and Ashutosh Bagchi

This paper extends the authors’ previous research work investigating resilience for municipal infrastructure from an asset management perspective. Therefore, this paper aims to…

Abstract

Purpose

This paper extends the authors’ previous research work investigating resilience for municipal infrastructure from an asset management perspective. Therefore, this paper aims to formulate a pavement resilience index while incorporating asset management and the associated resilience indicators from the authors’ previous research work.

Design/methodology/approach

This paper introduces a set of holistic-based key indicators that reflect municipal infrastructure resiliency. Thenceforth, the indicators were integrated using the weighted sum mean method to form the proposed resilience index. Resilience indicators weights were determined using principal components analysis (PCA) via IBM SPSS®. The developed framework for the PCA was built based on an optimization model output to generate the required weights for the desired resilience index. The output optimization data were adjusted using the standardization method before performing PCA.

Findings

This paper offers a mathematical approach to generating a resilience index for municipal infrastructure. The statistical tests conducted throughout the study showed a high significance level. Therefore, using PCA was proper for the resilience indicators data. The proposed framework is beneficial for asset management experts, where introducing the proposed index will provide ease of use to decision-makers regarding pavement network maintenance planning.

Research limitations/implications

The resilience indicators used need to be updated beyond what is mentioned in this paper to include asset redundancy and structural asset capacity. Using clustering as a validation tool is an excellent opportunity for other researchers to examine the resilience index for each pavement corridor individually pertaining to the resulting clusters.

Originality/value

This paper provides a unique example of integrating resilience and asset management concepts and serves as a vital step toward a comprehensive integration approach between the two concepts. The used PCA framework offers dynamic resilience indicators weights and, therefore, a dynamic resilience index. Resiliency is a dynamic feature for infrastructure systems. It differs during their life cycle with the change in maintenance and rehabilitation plans, systems retrofit and the occurring disruptive events throughout their life cycle. Therefore, the PCA technique was the preferred method used where it is data-based oriented and eliminates the subjectivity while driving indicators weights.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 6 May 2024

Marcelo Miguel da Cruz, Rodrigo Goyannes Gusmão Caiado, Tiago F.A.C. Sigahi, Rosley Anholon, Osvaldo L.G. Quelhas and Izabela Simon Rampasso

The purpose of this paper was to understand the difficulties related to asset management observed by experts in Brazilian organizations in light of the requirements outlined in…

Abstract

Purpose

The purpose of this paper was to understand the difficulties related to asset management observed by experts in Brazilian organizations in light of the requirements outlined in the ISO 55001:2014 standard.

Design/methodology/approach

A survey was performed with asset management experts. The collected data were analyzed using frequency analysis, hierarchical cluster analysis and fuzzy technique for order preference by similarity to deal solution (TOPSIS).

Findings

Based on data analysis, the most critical difficulties observed were related to managing and controlling the impact of changes in the company that affect asset management objectives; to the committing to and supporting the asset management system by the top management of the organization; to manage the processes for dealing with risks and opportunities for the asset management system and plans, and correcting failures in asset performance; and to plan and conduct actions in an integrated manner to identify and minimize adverse impacts associated with the asset management system, and afterwards verifying their effectiveness.

Originality/value

The findings of this study have important theoretical and practical contributions, since they indicate the most critical points observed in asset management in Brazil, which can be used as a source for future research and by professionals to prioritize difficulties in future planning and develop action plans to overcome them. The step-by-step methodological approach presented in this study provides professionals and researchers with a replicable method of identifying potential asset management difficulties in a given specific reality.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 30 April 2024

Sulakshya Gaur and Abhay Tawalare

Design cost overrun is one of the prominent factor that can impact the sustainable delivery of the project. It can be encountered due to a lack of information flow, design…

Abstract

Purpose

Design cost overrun is one of the prominent factor that can impact the sustainable delivery of the project. It can be encountered due to a lack of information flow, design variation, etc. thereby impacting the project budget, waste generation and schedule. An overarching impact of this is witnessed in the sustainability dimensions of the project, mainly in terms of economic and environmental aspects. This work, therefore, aims to assess the implications of a technological process, in the form of building information modelling (BIM), that can smoothen the design process and mitigate the risks, thus impacting the sustainability of the project holistically.

Design/methodology/approach

The identified design risks in construction projects from the literature were initially analysed using a fuzzy inference system (FIS). This was followed by the focus group discussion with the project experts to understand the role of BIM in mitigating the project risks and, in turn, fulfilling the sustainability dimensions.

Findings

The FIS-based risk assessment found seven risks under the intolerable category for which the BIM functionalities associated with the common data environment (CDE), data storage and exchange and improved project visualization were studied as mitigation approaches. The obtained benefits were then subsequently corroborated with the achievement of three sustainability dimensions.

Research limitations/implications

The conducted study strengthens the argument for the adoption of technological tools in the construction industry as they can serve multifaceted advantages. This has been shown through the use of BIM in risk mitigation, which inherently impacts project sustainability holistically.

Originality/value

The impact of BIM on all three dimensions of sustainability, i.e. social, economic and environmental, through its use in the mitigation of critical risks was one of the important findings. It presented a different picture as opposed to other studies that have mainly been dominated by the use of BIM to achieve environmental sustainability.

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 13 December 2022

Ram Asra Khural, Shashi, Myriam Ertz and Roberto Cerchione

This study explores the relationships among sustainability implementation barriers (resource, managerial and regulatory barriers), sustainability practices (sustainable…

Abstract

Purpose

This study explores the relationships among sustainability implementation barriers (resource, managerial and regulatory barriers), sustainability practices (sustainable construction materials, sustainable construction design, modern construction methods and environmental provisions and reporting) and sustainability performance (environmental, economic and social) in hill road construction (HRC).

Design/methodology/approach

Primary data were collected from the 313 HRC practitioners with the help of a questionnaire, and research hypotheses were tested employing structural equation modeling.

Findings

The findings reveal a mixed effect of sustainability implementation barriers. Resource (managerial) barriers are negatively related to all practices except environmental provisions and reporting (sustainable construction materials), while regulatory barriers only negatively impact modern construction methods. On the other hand, all sustainability practices positively impact environmental performance, whereas economic (social) performance is positively influenced by all practices, except environmental provisions and reporting (modern construction methods), and positively affects economic performance.

Originality/value

In order to transform HRC toward sustainability, the barriers to sustainability implementation, sustainability practices and performance need to be understood by practitioners; however, the relationships have not previously been empirically assessed in extant literature. Besides, past research appears to be predominantly focused on the environmental aspect, thereby neglecting economic and social aspects. This study is a modest attempt to bridge these research gaps.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 April 2024

Sophie van Roosmale, Amaryllis Audenaert and Jasmine Meysman

This paper aims to highlight the expanding link between facility management (FM) and building automation and control systems (BACS) through a review of literature. It examines the…

Abstract

Purpose

This paper aims to highlight the expanding link between facility management (FM) and building automation and control systems (BACS) through a review of literature. It examines the opportunities and challenges of BACS for facility managers and proposes solutions for mitigating the risks associated with BACS implementation.

Design/methodology/approach

This paper reviews various research papers to explore the positive influences of BACS on FM, such as support with strategic decision-making, predictive maintenance, energy efficiency and comfort improvement. It also discusses the challenges of BACS, including obsolescence, interoperability, vendor lock-in, reliability and security risks and suggests potential solutions based on existing literature.

Findings

BACS offers numerous opportunities for facility managers, such as improved decision-making, energy efficiency and comfort levels in office buildings. However, there are also risks associated with BACS implementation, including obsolescence, interoperability, vendor lock-in, reliability and security risks. These risks can be mitigated through measures such as hardware and software obsolescence management plans, functional requirement lists, wireless communication protocols, advanced feedback systems and increased awareness about BACS security.

Originality/value

To the best of the authors’ knowledge, no prior academic research has been conducted on the expanding link between FM and BACS. Although some papers have touched upon the opportunities and challenges of BACS for FM, this paper aims to provide a comprehensive overview of these findings by consolidating existing literature.

Details

Facilities , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 26 July 2022

Hiwa Esmaeilzadeh, Alireza Rashidi Komijan, Hamed Kazemipoor, Mohammad Fallah and Reza Tavakkoli-Moghaddam

The proposed model aims to consider the flying hours as a criterion to initiate maintenance operation. Based on this condition, aircraft must be checked before flying hours…

Abstract

Purpose

The proposed model aims to consider the flying hours as a criterion to initiate maintenance operation. Based on this condition, aircraft must be checked before flying hours threshold is met. After receiving maintenance service, the model ignores previous flying hours and the aircraft can keep on flying until the threshold value is reached again. Moreover, the model considers aircraft age and efficiency to assign them to flights.

Design/methodology/approach

The aircraft maintenance routing problem (AMRP), as one of the most important problems in the aviation industry, determines the optimal route for each aircraft along with meeting maintenance requirements. This paper presents a bi-objective mixed-integer programming model for AMRP in which several criteria such as aircraft efficiency and ferrying flights are considered.

Findings

As the solution approaches, epsilon-constraint method and a non-dominated sorting genetic algorithm (NSGA-II), including a new initializing algorithm, are used. To verify the efficiency of NSGA-II, 31 test problems in different scales are solved using NSGA-II and GAMS. The results show that the optimality gap in NSGA-II is less than 0.06%. Finally, the model was solved based on real data of American Eagle Airlines extracted from Kaggle datasets.

Originality/value

The authors confirm that it is an original paper, has not been published elsewhere and is not currently under consideration of any other journal.

1 – 10 of 567