Search results

1 – 10 of over 1000
Article
Publication date: 1 March 1993

R.J. Klein Wassink, M.C. Seegers and M.M.F. Verguld

Several effects of the atmosphere in the soldering oven on both the soldering process itself and the soldering results are discussed. Experiments have been undertaken to compare…

Abstract

Several effects of the atmosphere in the soldering oven on both the soldering process itself and the soldering results are discussed. Experiments have been undertaken to compare the results of soldering in air and in nitrogen containing 10,100 and 1000 ppm oxygen, in which, e.g., discolouration, wettability, solderability after reflow, solder bridging and solder‐ball formation were investigated. Unmounted FR‐4 testboards with both an RMA solder paste of known high quality and a low‐residue paste were used. Mounted test boards were used to analyse the self‐alignment of components and to compare the levels of soldering defects obtained in air and in nitrogen. The test results show that a nitrogen atmosphere containing 1000 ppm of oxygen or less is sufficiently pure to realise improved soldering conditions for most types of components. For the low‐residue paste tested, 1000 ppm is too high, but 100 ppm is sufficiently low. All effects on the soldering process will depend on the amount of oxygen in the gas. To produce an oven atmosphere of nitrogen with a very low amount of O2 (e.g., <100 ppm) is rather expensive, if this oven is to work under production conditions. Will the extra cost of investment and gas consumption be worthwhile in view of a better production yield and higher product quality? The authors explain why they do not believe this to be the case.

Details

Soldering & Surface Mount Technology, vol. 5 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 14 February 2018

Alexander Hanss and Gordon Elger

For soldering, flux is essential because it enables the wetting of the molten solder. Fluxless soldering, i.e. residue-free soldering with the aid of gaseous activators, has been…

Abstract

Purpose

For soldering, flux is essential because it enables the wetting of the molten solder. Fluxless soldering, i.e. residue-free soldering with the aid of gaseous activators, has been known for many years, but is only well established in the field of opto- and microwave electronics where the solder is applied as preform. In high-volume SMD applications where solder paste is printed, this technology is rarely used until now. The reducing effect of a gaseous activator like formic acid vapor on certain solder alloys is known in practice. However, the corresponding reactions which occur under soldering conditions in nitrogen atmosphere have so far not been systematically investigated for different solder alloys. This study aims to analyze the different chemical reaction channels which occur on the surface of different solders, i.e. catalytical dissociation of formic acid on the pure or oxidized metal surface and the formation and evaporation of metal formates. Based on this analysis, a residue-free solder process under formic acid is developed for solder paste applications.

Design/methodology/approach

In this paper, different solder alloys (SnAgCu, SnPb, BiSn, In) were analyzed with thermal gravimetric analysis (TGA) under formic acid flow. Details on mass change depending on the soldering temperature are presented. Activation temperatures are estimated and correlated to the soldering processes. Based on the analysis, fluxless solder pastes and suitable soldering processes are developed and presented. Major paste properties such as printability are compared to a commercial flux solder paste. High-power flip chip LEDs which can be assembled directly on a printed circuit board are used to demonstrate the fluxless soldering. Likewise, the soldering results of standard paste and fluxless paste systems after a reflow process are evaluated and compared.

Findings

The experimental results show that TGA is an efficient way to gain deeper understanding of the redox processes which occur under formic acid activation, i.e. the formation of metal formates and their evaporation and dissociation. It is possible to solder residue-free not only with preforms but also with a fluxless solder paste. The resulting solder joints have the same quality as those for standard solder paste in terms of voids detected by X-ray and mechanical shear strength.

Originality/value

In the fluxless soldering process, the reduction of oxide layers, and therefore the wetting of the solder spheres, is enabled by gaseous formic acid. After the soldering process, no cleaning process is necessary because no corrosive residues are left on the circuit boards and components. Therefore, soldering using solder paste without aggressive chemical ingredients has a high market potential. Expensive preforms could be replaced by paste dispensing or paste printing.

Details

Soldering & Surface Mount Technology, vol. 30 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 17 April 2024

Bingyi Li, Songtao Qu and Gong Zhang

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide…

Abstract

Purpose

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide theoretical support for the industrial SMT application of Sn-Zn solder.

Design/methodology/approach

This study evaluates the properties of solder pastes and selects a more appropriate reflow parameter by comparing the microstructure of solder joints with different reflow soldering profile parameters. The aim is to provide an economical and reliable process for SMT production in the industry.

Findings

Solder paste wettability and solder ball testing in a nitrogen environment with an oxygen content of 3,000 ppm meet the requirements of industrial production. The printing performance of the solder paste is good and can achieve a printing rate of 100–160 mm/s. When soldering with a traditional stepped reflow soldering profile, air bubbles are generated on the surface of the solder joint, and there are many voids and defects in the solder joint. A linear reflow soldering profile reduces the residence time below the melting point of the solder paste (approximately 110 s). This reduces the time the zinc is oxidized, reducing solder joint defects. The joint strength of tin-zinc joints soldered with the optimized reflow parameters is close to that of Sn-58Bi and SAC305, with high joint strength.

Originality/value

This study attempts to industrialize the application of Sn-Zn solder and solves the problem that Sn-Zn solder paste is prone to be oxidized in the application and obtains the SMT process parameters suitable for Sn-9Zn-2.5Bi-1.5In solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 May 2015

Frantisek Steiner, Karel Rendl and Vaclav Wirth

The purpose of this paper is to verify how solder joint properties correlate with soldering profile set-up. These characteristics act against each other. All observed properties…

Abstract

Purpose

The purpose of this paper is to verify how solder joint properties correlate with soldering profile set-up. These characteristics act against each other. All observed properties may significantly affect the quality and reliability of solder joints. The purpose is also to design recommendations for manufacturers of electronic assemblies.

Design/methodology/approach

The samples for experiment were reflowed by using a laboratory reflow oven. A LEXT laser confocal microscope was used for wetting angle and intermetallic compound (IMC) thickness measurement. The ionic contamination was measured by using a contaminometer.

Findings

The appropriate choice of soldering profile is very important for the reliability of electronic assemblies. The higher temperatures or longer preheating and soldering times improve the wetting angle. Likewise, there is also the activation of all the fluxes. The result is low contamination with printed circuit boards (PCBs). On the other hand, we must not forget that higher temperatures and longer soldering time also affect the thickness of the IMC. The outer limits recommended by the manufacturer were selected for the soldering profile set-up. Even within these limits, it is possible to achieve an improvement in the wetting angle, an improvement in levels of PCB contamination and an increase in the thickness of the IMC. This paper presents the results achieved for solders Sn42Bi57.6Ag0.4, Sn96.5Ag3Cu0.5 and Sn97Ag3.

Originality/value

The gained knowledge on the correlation between IMC thickness, solderability of PCB and PCB contamination caused by different soldering profile set-ups can help to prevent reliability problems because each of the named effects has a significant influence on reliability.

Details

Circuit World, vol. 41 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 March 1995

A.Z. Miric

As electronic devices have become more complex and interconnection density has increased, electronics manufacturers are facing new challenges to solder SMD packages with pitches…

Abstract

As electronic devices have become more complex and interconnection density has increased, electronics manufacturers are facing new challenges to solder SMD packages with pitches down to 0.3 mm or less. To achieve positive results, all parameters throughout the soldering process have to be optimised. The first step on the SMT line is the application of solder paste. Any faults at this stage (material, equipment or process related) will be carried through the entire production line. Solder paste is one of the most important factors in the whole chain. It is important to understand the influence of the metal powders, activators, solvents and additives on soldering of ultra‐fine pitch SMDs. Special attention must be paid to the powder (fine pitch devices demand a fine grain in the solder paste). The reliability of the soldered joints is mainly dependent (apart from on the solder paste) on the solder quantities applied to the component pads, the tolerance regarding the shape and size of stencils + PCBs + SMDs, the accuracy of mounting and printing, and on the reflow profile. It is important to design the stencil apertures with sufficient surface area to provide enough surface tension (between the paste and the component pad) to pull the solder paste out of the stencil, while keeping the component pad small enough to match the lead of the component. As the wetting of fine pitch components is especially critical, it is necessary to pay more attention to the design of the reflow profile. It is recommended to solder ultra‐fine pitch components under nitrogen, as this enlarges the process window considerably.

Details

Soldering & Surface Mount Technology, vol. 7 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 5 May 2022

Mohamad Solehin Mohamed Sunar, Maria Abu Bakar, Azman Jalar, Mohamad Riduwan Ramli and Fakhrozi Che Ani

Reflow solder joint quality is significantly affected by the ability of the solder to perfectly fill pad space and retain good solder joint shape. This study aims to investigate…

Abstract

Purpose

Reflow solder joint quality is significantly affected by the ability of the solder to perfectly fill pad space and retain good solder joint shape. This study aims to investigate solder joint quality by quantitatively analyzing the stencil printing-deposited solder volume, solder height and solder coverage area.

Design/methodology/approach

The dispensability of different solder paste types on printed circuit board (PCB) pads using different stencil aperture shapes was evaluated. Lead-free Type 4 (20–38 µm particle size) and Type 5 (15–25 µm particle size) solder pastes were used to create solder joints according to standard reflow soldering.

Findings

The results show that the stencil aperture shape greatly affects the solder joint quality as compared with the type of solder paste. These investigations allow the development of new strategies for solving solder paste stencil printing issues and evaluating the quality of solder joints.

Originality/value

The reflow soldering process requires the appropriate selection of the stencil aperture shape according to the PCB and the solder paste according to the particle-size distribution of the solder alloy powder. However, there are scarce studies on the effects of stencil aperture shape and the solder alloy particle size on the solder paste space-filling ability.

Details

Microelectronics International, vol. 39 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 December 2004

Janusz Sitek, Dubravka Ročak, Krystyna Bukat, Janeta Fajfar‐Plut and Darko Belavič

The European Commission has decided that from the second half of 2006 only lead‐free solder pastes will be permitted for use in the electronics industry. Earlier results of…

Abstract

The European Commission has decided that from the second half of 2006 only lead‐free solder pastes will be permitted for use in the electronics industry. Earlier results of testing showed that lead‐free solder pastes may not be appropriate for both printed‐circuit‐board (PCB) and hybrid‐circuit applications, because of the materials' compatibility with the soldering process and with the solder pads. The basic properties of the investigated pastes show which of the tested solder pastes can be used for both applications. After selection of the appropriate solder pastes, reliability tests were conducted. The surface insulation resistance was tested for both the hybrid circuits and PCBs, whereas the mechanical strength of the soldered joints of components was only tested for the PCBs.

Details

Soldering & Surface Mount Technology, vol. 16 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 1993

S.H. Mannan, N.N. Ekere, E.K. Lo and I. Ismail

This paper examines the rôle that the squeegee plays in the solder paste printing process. Although the printing of solder paste is only one stage of many in the surface mount…

Abstract

This paper examines the rôle that the squeegee plays in the solder paste printing process. Although the printing of solder paste is only one stage of many in the surface mount assembly process, it is crucial to deposit the correct amounts of solder paste cleanly onto the substrate. The amount of solder paste deposited affects the reliability and strength of the reflowed solder joint. Surface mount component lead pitches are continually being reduced due to the requirements of packing more and more components into a given space on the PCB, and this necessitates a proper understanding of the printing process and in particular of the squeegee which plays an important part in determining paste heights and the occurrence of defects. The paper outlines a model which predicts scooping and skipping in the stencil printing of solder pastes used in the reflow soldering of surface mounted devices. The model is based on the forces acting on the squeegee blade, which determines the paste flow pattern ahead of the squeegee, and on the stencil aperture geometry. The paper also examines the interactions between the paste properties and squeegee material properties. These interactions produce printing defects such as scooping, skipping and wet bridging. Results of an experimental comparison of different types of squeegee blade used in the stencil printing of solder pastes for reflow soldering in SMT, as well as the experimental results for squeegee deformation into stencil apertures, were used for validating the model. The empirically enhanced model which results takes into account the force on the squeegee due to solder paste flow and some of the non‐Newtonian properties of the solder paste. The main utility of the proposed model is the control of solder paste printing quality.

Details

Soldering & Surface Mount Technology, vol. 5 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 14 January 2022

Krzysztof Górecki, Przemysław Ptak and Barbara Dziurdzia

This paper presents the results of the investigations of LED modules soldered with the use of different soldering pastes.

Abstract

Purpose

This paper presents the results of the investigations of LED modules soldered with the use of different soldering pastes.

Design/methodology/approach

The tested power LED modules are soldered using different solder pastes and soldering processes. Thermal parameters of the performed modules are tested using indirect electrical methods. The results of measurements obtained for different modules are compared and discussed.

Findings

It was shown that the soldering process visibly influences the results of measurements of optical and thermal parameters of LED modules. For example, values of thermal resistance of these modules and the efficiency of conversion of electrical energy into light differ between each other even by 15%.

Practical implications

The obtained results of investigations can be usable for designers of the assembly process of power LED modules.

Originality/value

This paper shows the investigations results in the area of effective assembly of power LEDs to the metal core printed circuit board (MCPCB) using different soldering pastes (REL22, REL61, LMPA-Q6, OM-5100, OM-338-PT, M8, OM-340, CVP-390). It was shown that the best thermal and optical properties of these modules are obtained for the OM5100 paste by Alpha Assembly.

Details

Soldering & Surface Mount Technology, vol. 34 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 7 August 2020

Przemysław Ptak, Krzysztof Górecki, Agata Skwarek, Krzysztof Witek and Jacek Tarasiuk

This paper aims to present the results of investigations that show the influence of soldering process parameters on the optical and thermal parameters of power LEDs.

Abstract

Purpose

This paper aims to present the results of investigations that show the influence of soldering process parameters on the optical and thermal parameters of power LEDs.

Design/methodology/approach

The power LEDs were soldered onto metal core printed circuit board (MCPCB) substrates in different soldering ovens: batch and tunnel types, characterized by different thermal profiles. Three types of solder pastes based on Sn99Ag0.3Cu0.7 with the addition of TiO2 were used. The thermal and optical parameters of the diodes were measured using classical indirect electrical methods. The results of measurements obtained were compared and discussed.

Findings

It was shown that the type of oven and soldering thermal profile considerably influence the effectiveness of the removal of heat generated in the LEDs tested. This influence is characterized by thermal resistance changes. The differences between the values of this parameter can exceed 20%. This value also depends on the composition of the soldering paste. The differences between the diodes tested can exceed 15%. It was also shown that the luminous flux emitted by the diode depends on the soldering process used.

Practical implications

The results obtained could be useful for process design engineers for assembling power LEDs for MCPCBs and for designers of solid-state light sources.

Originality/value

This paper presents the results of investigations into the influence of the soldering profiles and soldering pastes used on the effectiveness of the removal of heat generated in power LEDs. It shows and discusses how the factors mentioned above influence the thermal resistance of the LEDs and optical parameters that characterize the light emitted.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 1000