Search results

1 – 10 of over 39000
Article
Publication date: 18 April 2022

Hamdi Ercan and Mustafa Akın

In more than 100 years of aviation, significant progress has been made in flight control systems. The aircrafts that have entered service for the past ten years tend towards power

Abstract

Purpose

In more than 100 years of aviation, significant progress has been made in flight control systems. The aircrafts that have entered service for the past ten years tend towards power-by-wire flight control with electrical actuators. The purpose of this study is to analyse the effects of electrical actuation on power consumption, weight and fuel consumption on a commercial transport aircraft.

Design/methodology/approach

The Airbus A321-200 aircraft was chosen as a case study for analysing the effects of electrical actuation on the flight control actuation system (FCAS) architecture, and Pacelab SysArc software was used for design, modelling and analysis. As alternatives to the existing system, hybrid and all-electric models are built to a set of design guidelines with certain limitations.

Findings

Compared to the existing FCAS architecture model, 80 kg weight savings in the hybrid FCAS architecture model and 171 kg weight savings in the all-electric FCAS architecture model were observed. In terms of fuel consumption, it has been observed that there is 0.25% fuel savings in the hybrid FCAS architecture model, and 0.48% fuel savings in the all-electric FCAS architecture model compared to the existing FCAS architecture model at 3200 NM.

Practical implications

In line with the data obtained from this study, it is predicted that electrical actuation is more preferable in aircraft, considering its positive effects on weight and fuel consumption.

Originality/value

In this study, three different models were created: the existing FCAS architecture of a commercial transport aircraft, the hybrid FCAS architecture and the all-electric FCAS architecture. Hybrid and all-electric models are built according to a set of design guidelines, with certain limitations. Then, similar flight missions consisting of the same flight conditions are defined to analyse the effects of power consumption, weight, and fuel consumption comparatively.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 January 1989

Bennett J. Price

Computers need clean, reliable, electrical power. The various faults of electrical power, such as spikes, sags, outages, noise, frequency variations, and static electricity, are…

Abstract

Computers need clean, reliable, electrical power. The various faults of electrical power, such as spikes, sags, outages, noise, frequency variations, and static electricity, are defined and described. Preventive measures that computer users can employ to reduce the potential of electrical problems are discussed, as are the processes for detecting, diagnosing, and curing electrical problems when they do occur. Sidebars consider: transformers; power distribution units (PDUs); surge currents/ linear and non‐linear loads; and sizing the power conditioning system. The next issue will conclude this series with an article on uninterruptible power supplies and a bibliography.

Details

Library Hi Tech, vol. 7 no. 1
Type: Research Article
ISSN: 0737-8831

Article
Publication date: 2 April 2024

Chenyu Zhang, Hongtao Xu and Yaodong Da

Thermal protection of a flange is critical for preventing tower icing and collapse of wind turbines (WTs) in extremely cold weather. This study aims to develop a novel thermal…

22

Abstract

Purpose

Thermal protection of a flange is critical for preventing tower icing and collapse of wind turbines (WTs) in extremely cold weather. This study aims to develop a novel thermal protection system for the WTs flanges using an electrical heat-tracing element.

Design/methodology/approach

A three-dimensional model and the Poly-Hexacore mesh structure are used, and the fluid-solid coupling method was validated and then deployed to analyze the heat transfer and convection process. Intra-volumetric heat sources are applied to represent the heat generated by the heating element, and the dynamic boundary conditions are considered. The steady temperature and temperature uniformity of the flange are the assessment criteria for the thermal protection performance of the heating element.

Findings

Enlarging the heating area and increasing the heating power improved the flange's temperature and temperature uniformity. A heating power of 4.9 kW was suitable for engineering applications with the lowest temperature nonuniformity. Compared with continuous heating, the increased temperature nonuniformity was buffered, and the electrical power consumption was reduced by half using pulse heating. Pulse heating time intervals of 1, 3 and 4 h were determined for the spring, autumn and winter, respectively.

Originality/value

The originality of this study is to propose a novel electrical heat-tracing thermal protection system for the WTs flanges. The effect of different arrangements, heating powers and heating strategies was studied, by which the theoretical basis is provided for a stable and long-term utilization of the WT flange.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2006

Pascal Mognol, Denis Lepicart and Nicolas Perry

To discuss integration of the rapid prototyping environmental aspects with the primary focus on electrical energy consumption.

3121

Abstract

Purpose

To discuss integration of the rapid prototyping environmental aspects with the primary focus on electrical energy consumption.

Design/methodology/approach

Various manufacturing parameters have been tested on three rapid prototyping systems: Thermojet (3DS), FDM 3000 (Stratasys) and EOSINT M250 Xtended (EOS). The objective is to select sets of parameters for reduction of electrical energy consumption. For this, a part is manufactured in several orientations and positions in the chamber of these RP systems. For each test, the electrical power is noted. Finally, certain rules are proposed to minimize this electrical energy consumption during a job.

Findings

It is important to minimize the manufacturing time but there is no general rule for optimization of electrical energy consumption. Each RP system must be tested with energy consumption considerations under the spotlight.

Research limitations/implications

The work is only based on rapid prototyping processes. The objective is to take into consideration the complete life‐cycle of a rapid prototyped part: manufacturing of raw material as far as reprocessing of waste.

Practical implications

Reduction of electrical energy consumption to complete a job.

Originality/value

Currently, environmental aspects are not well studied in rapid prototyping.

Details

Rapid Prototyping Journal, vol. 12 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 September 2014

Michael J. Armstrong and Christine A.H. Ross

This article is aims to inform aircraft propulsion system designers of the implications which fundamental power distribution design assumptions have on the effectiveness and…

Abstract

Purpose

This article is aims to inform aircraft propulsion system designers of the implications which fundamental power distribution design assumptions have on the effectiveness and viability of turboelectric distributed propulsion (TeDP) systems. Improvements and challenges associated with selecting alternating or direct current for normal- and superconducting distribution systems are presented. Additionally, for superconducting systems, the benefits of bi-polar DC distribution are discussed, as well as the implications of operating voltage on the mass and efficiency of TeDP grid components.

Design/methodology/approach

The approach to this paper selects several high-level fundamental configuration decisions, which must be made, and it qualitatively discusses potential implications of these decisions.

Findings

Near term TeDP architectures which employ conventionally conducting systems may benefit from alternating current (AC) distribution concepts to eliminate the mass and losses associated with power conversion. Farther term TeDP concepts which employ superconducting technologies may benefit from direct current (DC) distribution to reduce the cryocooling requirements stemming from AC conduction losses. Selecting the operating voltage for superconducting concepts requires a divergence from the present day criteria employed with terrestrial superconducting transmission systems.

Practical implications

The criteria presented in the paper will assist in the early conceptual architecting of TeDP systems.

Originality/value

The governing principles behind the configuration of multi-MW airborne electrical microgrid systems are presently immature. This paper represents a unique look and the motivating principles behind fundamental electrical configuration decisions in the context of TeDP.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 13 October 2022

Eyyüp Öksüztepe, Ufuk Kaya and Hasan Kurum

More electric aircraft (MEA) is defined as the extensive usage of electric power in aircraft. The demand for electric power in new generation aircraft rises due to environmental…

Abstract

Purpose

More electric aircraft (MEA) is defined as the extensive usage of electric power in aircraft. The demand for electric power in new generation aircraft rises due to environmental and economic considerations. Hence, efficient and reliable starter/generators (SGs) are trending nowadays. The conventional main engine starting system and power generation system can be replaced with an individual SG. The constraints of the SG should be investigated to handle the aviation requirements. Even though the SG is basically an electric machine, it requires a multidisciplinary study consisting of electromagnetic, thermal and mechanical works to cope with aviation demands. This study aims to review conventional and new-generation aircraft SGs from the perspective of electric drive applications.

Design/methodology/approach

First of all, the importance of the MEA concept has been briefly explained. Also, the historical development and the need for higher electrical power in aircraft have been indicated quantitatively. Considering aviation requirements, the candidate electrical machines for aircraft SG have been determined by the method of scoring. Those machines are compared over 14 criteria, and the most predominant of them are specified as efficiency, power density, rotor thermal tolerance, high-speed capability and machine complexity. The features of the most suitable electrical machine are pointed out with data gathered from empirical studies. Finally, the trending technologies related to efficient SG design have been explained with numeric datasets.

Findings

The induction motor, switched reluctance motor and permanent magnet synchronous motor (PMSM) are selected as the candidate machines for SGs. It has been seen that the PMSM is the most preferable machine type due to its efficient operation in a wide range of constant power and speed. It is computationally proven that the using amorphous magnetic alloys in SG cores increases the machine efficiency more. Also, the benefits of high voltage direct current (HVDC) use in aircraft have been explained by a comparison of different aircraft power generation standards. It is concluded that the HVDC use in aircraft decreases total cable weight and increases aircraft operation efficiency. The thermal and mechanical tolerance of the SG is also vital. It has been stated that the liquid cooling techniques are suitable for SGs.

Originality/value

The demand for electrical power in new generation aircraft is increasing. The SG can be used effectively and efficiently instead of conventional systems. To define requirements, constraints and suggestions, this study investigates the SGs from the perspective of electric drive applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 February 2022

Oleksii V. Bialobrzheskyi, Dmytro RodKin and Andrii Gladyr

At the current stage of electrical technology development, it is relevant to take into account the quality of electrical energy. It can be implemented if an assessed energy…

Abstract

Purpose

At the current stage of electrical technology development, it is relevant to take into account the quality of electrical energy. It can be implemented if an assessed energy quality indicator is available. The amount of electrical energy is determined by active power, which is transmitted over a certain time period. In some cases, reactive power is included in the metering system. The distortion power is justifiably criticized and is not taken into account. The purpose of this paper consists in the substantiation of the indicator of the distortion of the periodic polyharmonic current electrical energy power, by separating from the instantaneous power such harmonics, which formed by same frequencies current and voltage harmonics.

Design/methodology/approach

Using the method of calculating linear polyharmonic current circuits, the following quantities are identified in instantaneous power: active, reactive and apparent powers of each harmonic. These components are known from references as canonical.

Findings

By the method of instantaneous power harmonic analysis, the components formed by current and voltage harmonics of the same frequency and different frequencies are distinguished.

Research limitations/implications

The RMS value of the instantaneous power due to current and voltage harmonics of different frequencies is justified in the work. This quantity allows you to distinguish the instantaneous power distortion level in comparison with the existing quantity.

Practical implications

The results can be used to assess the level of instantaneous power distortion level in commercial and technical metering systems.

Originality/value

The definition of instantaneous power distortion by extracting the canonical components from it and determining the root mean square value of the remainder is proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 March 2020

Weiwei Li, Jin-Lou Zhao, Linxiao Dong and Chong Wu

Long-term contract is an important developing direction of China's coal industry coordination. This paper aims to discuss how to use contract for difference (CFD) to avoid risk…

Abstract

Purpose

Long-term contract is an important developing direction of China's coal industry coordination. This paper aims to discuss how to use contract for difference (CFD) to avoid risk and effectively increase the benefit of both coal and thermal power plants in the coal-electricity supply chain.

Design/methodology/approach

Based on prospect theory, this paper takes the risks and benefits of the coal and coal-fired power plants in the coal supply chain under CFD into balanced consideration to construct the contract coordination mechanism. In this mechanism, the coal demand in the coal supply chain equilibrium under centralized decision-making is regarded as the total annual volume of transactions needed to design the contract coordination mechanism and solve double marginalization. Then, based on prospect theory, in the construction of CFD, this paper takes the income of power and coal enterprises when they are in equilibrium under Stackelberg non-cooperative game as the reference point. In addition, considering that coal demand is a random variable, the CFD with a one-year trading session can be designed.

Findings

The research derives the coal price of the contract for difference, contract trading volume and its proportion of the total trading volume. A numerical example shows that the model above can be used to effectively avoid the risk of both coal and electricity sides.

Originality/value

To solve the conflict between coal enterprises and thermal power plants, let the coal-electricity supply chain be converted from non-cooperative game to cooperative game. Based on the prospect theory, this paper takes the income of the non-cooperative game of coal and thermal power plants as a reference point and considers how to design the coordination mechanism, the contract for difference, so as to make the two parties cooperate to solve the double marginal utility of the non-cooperative game in a chain supply. The main innovation of the work lies in the following: first, the coal demand when the coal-electrical supply chain is in balance under centralized decision-making is taken as the total annual trading volume needed to design the contract coordination mechanism and solve double marginalization. Second, based on prospect theory, in the construction of CFD, the benefits of coal-fired power plants and coal enterprises when both sides are in equilibrium under the Stackelberg non-cooperative game are taken as the reference points, and coal demand is taken as a random variable to design the CFD with a one-year transaction period. The price of coal that is not traded through CFD is calculated according to the daily market price. Third, this paper proposes the prospect M-V criterion of the risk-benefit equilibrium of both power and coal enterprises, which means that the risk-benefit equilibrium of both sides is the prospect variance effect of both sides relative to the reference point benefit divided by the prospect expectation effect.

Details

Kybernetes, vol. 50 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 January 2013

Z.Q. Zhu and Jiabing Hu

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a brief…

1661

Abstract

Purpose

Wind energy has matured to a level of development at which it is ready to become a generally accepted power generation technology. The aim of this paper is to provide a brief review of the state of the art in the area of electrical machines and power‐electronic systems for high‐power wind energy generation applications. As the first part of this paper, latest market penetration, current technology and advanced electrical machines are addressed.

Design/methodology/approach

After a short description of the latest market penetration of wind turbines with various topologies globally by the end of 2010 is provided, current wind power technology, including a variety of fixed‐ and variable‐speed (in particular with doubly‐fed induction generator (DFIG) and permanent magnet synchronous generator (PMSG) supplied with partial‐ and full‐power converters, respectively) wind power generation systems, and modern grid codes, is presented. Finally, four advanced electrical‐machine systems, viz., brushless DFIG, open winding PMSG, dual/multi 3‐phase stator‐winding PMSG and magnetic‐gear outer‐rotor PMSG, are identified with their respective merits and challenges for future high‐power wind energy applications.

Findings

For the time being, the gear‐drive DFIG‐based wind turbine is significantly dominating the markets despite its defect caused by mechanical gears, slip rings and brush sets. Meanwhile, direct‐drive synchronous generator, especially utilizing permanent magnets on its rotor, supplied with a full‐capacity power converter has become a more effective solution, particularly in high‐power offshore wind farm applications.

Originality/value

This first part of the paper reviews the latest market penetration of wind turbines with a variety of mature topologies, by summarizing their advantages and disadvantages. Four advanced electrical‐machine systems are selected and identified by distinguishing their respective merits and challenges for future high‐power wind energy applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 1 October 2005

728

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 39000