Search results

1 – 10 of 385
Article
Publication date: 28 June 2013

H.B. Lu, W.M. Huang and Y.T. Yao

The purpose of this paper is to examine the underlying mechanism and physico‐chemical requirements of chemo‐responsive shape change/memory polymers and to explore the future trend…

1641

Abstract

Purpose

The purpose of this paper is to examine the underlying mechanism and physico‐chemical requirements of chemo‐responsive shape change/memory polymers and to explore the future trend of development and potential applications.

Design/methodology/approach

Working mechanism in chemo‐responsive shape change/memory polymers is firstly identified. And then the physico‐chemical requirements for the representative polymers are characterized.

Findings

The different working mechanisms, fundamentals, physico‐chemical requirements and theoretical origins have been discussed. Current research and development on the fabrication strategies of chemo‐responsive shape change/memory polymers have been summarised. The future trend and potential applications have been explored and estimated.

Research limitations/implications

This review examines physico‐chemical requirements and theoretical origins necessary to achieve chemo‐responsiveness, and then discusses recent developments and future trends.

Practical implications

Shape change/memory polymers can be used in the broad field of bio‐ and/or medicine.

Originality/value

Breakthroughs and rapid development of chemo‐responsive shape change/memory polymers will significantly improve the research and development of smart materials, structures and systems.

Details

Pigment & Resin Technology, vol. 42 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2018

Changchun Wang, Bo Kou, Zusheng Hang, Xuejuan Zhao, Tianxuan Lu, Ziqi Wu and Jin-Peng Zhang

This study aims to present that the chemo-responsive shape recovery of thermoplastic polyurethane (TPU) is tunable by solvents with different solubility parameters, and it is…

Abstract

Purpose

This study aims to present that the chemo-responsive shape recovery of thermoplastic polyurethane (TPU) is tunable by solvents with different solubility parameters, and it is generic for chemo-responsive shape-memory polymer and its composites.

Design/methodology/approach

Two kinds of commercial TPU samples with different thicknesses were prepared by panel vulcanizer and injection molding (an industrial manner) to investigate their chemo-responsive shape memory properties in acetic ether and acetone.

Findings

Results showed that all of TPU films with different thicknesses can fully recover their original shapes weather they recover in acetic ether or acetone. But the recovery time of TPU films in acetone is greatly reduced, especially for the twisting samples. The residual strains of recovery TPU samples after extension reduce obviously.

Research limitations/implications

The great decrement of recovery time is related to two factors. One is due to the bigger solubility parameter of acetone with higher dipole moment compared with those of acetic ether, and the other is the remained internal stress of TPU films after preparation. The internal stress is identified to have an effect on the shape-memory properties by comparing the recovery process of samples with/without annealing. The reduced residual strains of recovery TPU samples after extension is due to the increasing mobility of polymer segments after molecules of acetic ether penetrates into the polymeric chains.

Originality/value

This is a universal strategy to control the recovery process of shape-memory materials or composites. The underlying mechanism is generic and should be applicable to chemo-responsive shape-memory polymers or their composites.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 May 2015

Haibao Lu, Yongtao Yao, Shipeng Zhu, Yunhua Yang and Long Lin

The purpose of this paper is a study aimed at overcoming the interface issue between nanopaper and polymer matrix in shape-memory polymer (SMP) composite laminates caused by their…

Abstract

Purpose

The purpose of this paper is a study aimed at overcoming the interface issue between nanopaper and polymer matrix in shape-memory polymer (SMP) composite laminates caused by their large dissimilarity in electrical/thermal conductive properties. The study attempted to develop an effective approach to fabricate free-standing carbon nanofibre (CNF) assembly in octagon shape formation. The structure design and thermal conductive performance of the resulting octagon-shaped CNF assembly were optimised and simulated.

Design/methodology/approach

The CNF nanopaper was prepared based on a filtration method. The SMP nanocomposites were fabricated by incorporating these CNF assemblies with epoxy-based SMP resin by a resin-transfer modelling technique. Thermal conductivity of the octagon-shaped CNF assembly was simulated using the ANSYS FLUENT software for structure design and optimisation. The effect of the octagon-shaped CNF on the thermomechanical properties and thermally responsive shape-memory effect of the resulting SMP nanocomposites were characterised and interpreted.

Findings

The CNF template incorporated with SMP to achieve Joule heating triggered shape recovery at a low electric voltage of 3-10 V, due to which the electrical resistivity of SMP nanocomposites was significantly improved and lowered to 0.20 O·cm by the CNF template. It was found that the octagon CNF template with 2 mm width of skeleton presented a highest thermally conductive performance to transfer resistive heat to the SMP matrix.

Research limitations/implications

A simple way for fabricating electro-activated SMP nanocomposites has been developed by using an octagon CNF template. Low electrical voltage actuation in SMP has been achieved.

Originality/value

The fabricated CNF template, the structure design and analysis of dynamic thermomechanical properties of SMP are novel.

Details

Pigment & Resin Technology, vol. 44 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 January 2014

Haibao Lu, Yongtao Yao and Long Lin

This article aims to present a systematic and up-to-date account of carbon-based reinforcements, including carbon nanotube (CNT), carbon nanofibre (CNF), carbon black (CB), carbon…

1633

Abstract

Purpose

This article aims to present a systematic and up-to-date account of carbon-based reinforcements, including carbon nanotube (CNT), carbon nanofibre (CNF), carbon black (CB), carbon fibre (CF) and grapheme, in shape-memory polymer (SMP) for electrical actuation.

Design/methodology/approach

Studies exploring carbon-based reinforcement in SMP composites for electrically conductive performance and Joule heating triggered shape recovery have been included, especially for the principle design, characterisation and shape recovery behaviour, making the article a comprehensive account of the systemic progress in SMP composite incorporating conductive carbon reinforcement.

Findings

SMPs are fascinating materials and have attracted great academic and industrial attention owing to their significant macroscopic shape deformation in the presence of an appropriate stimulus. The working mechanisms, the physico requirements and the theoretical origins of the different types of carbon-based reinforcement SMP composites have been discussed. Current research and development on the fabrication strategies of carbon-based reinforcement SMP composites have been summarised.

Research limitations/implications

A systematic review is to evaluate carbon-based reinforcements in SMPs for electrical actuation and discuss recent developments and future applications.

Practical implications

Carbon-based reinforcements in SMPs can be used as smart deployable space structure in the broad field of aerospace technologies.

Originality/value

To reveal the research and development of utilising CNT, CNF, CB, CF and grapheme to achieve shape recovery of SMP composites through electrically resistive heating, which will significantly benefit the research and development of smart materials and systems.

Details

Pigment & Resin Technology, vol. 43 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2018

Yubing Dong, Chen Qian, Jian Lu and Yaqin Fu

Epoxy (EP) and polye-caprolactone (PCL) are typical dual-shape memory polymer (DSMP). To get excellent triple-shape memory effect (TSME) polymer composites which are made from EP…

Abstract

Purpose

Epoxy (EP) and polye-caprolactone (PCL) are typical dual-shape memory polymer (DSMP). To get excellent triple-shape memory effect (TSME) polymer composites which are made from EP and PCL. Miscible PCL/EP blend composites have been investigated and compared to the TSMEs with electrospun PCL microfiber membranes/EP composites. Clay montmorillonite (MMT)-modified electrospun PCL microfiber membranes were prepared to improve the shape memory fixities of electrospun PCL microfiber membranes/EP composites.

Design/methodology/approach

The morphologies of electrospun PCL microfiber membranes and the cross section of PCL/EP composites were studied using a field emission scanning electron microscope (FE-SEM), and the existence of MMT was confirmed by a transmission electron microscope. Thermal mechanical properties were observed by a differential scanning calorimeter (DSC) and a dynamic thermomechanical analysis machine, and the TSMEs were also determined through dynamic mechanical analysis.

Findings

Results indicate that the TSMEs of electrospun PCL microfiber membranes/EP composites were excellent, whereas the TSMEs of PCL/EP blend composites were poor. The TSMEs of PCL electrospun microfiber membranes/EP composites significantly improved with the addition of the PCL electrospun microfiber modified with moderate MMT.

Research limitations/implications

Adding a moderate content of MMT into the electrospun PCL fibers, could improve the TSME of the PCL fiber membranes/EP composites. This study was to create a simple and effective method that can be applied to improve the performance of other SMP.

Originality/value

A novel triple-shape memory composite were made from dual-shape memory EP and electrospun PCL fiber membranes.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2018

Yongkun Wang, Tianran Ma, Wenchao Tian, Junjue Ye, Xing Wang and Xiangjun Jiang

The purpose of this paper is to prepare novel electroactive shape memory nanocomposites based on graphene and study the thermomechanical property and shape memory behavior of…

Abstract

Purpose

The purpose of this paper is to prepare novel electroactive shape memory nanocomposites based on graphene and study the thermomechanical property and shape memory behavior of nanocomposites.

Design/methodology/approach

Graphene was dispersed in N,N-dimethylformamide, and the mixture was spooned into epoxy-cyanate ester mixtures to form graphene/epoxy-cyanate ester nanocomposites. The nanocomposites were deformed under 150°C, and shape recovery test was conducted under an electric voltage of 20-100 V.

Findings

Graphene is used to improve the shape recovery behavior and performance of shape-memory polymers (SMPs) for enhanced electrical actuation effectiveness. With increment of graphene content, the shape recovery speed of nanocomposites increases significantly.

Research limitations/implications

A simple way for fabricating electro-activated SMP nanocomposites has been developed by using graphene.

Originality/value

The outcome of this study will help to fabricate the SMP nanocomposites with high electrical actuation effectiveness and improve the shape recovery speed of the nanocomposites.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 January 2017

Zhenghong Li, Haibao Lu, Yongtao Yao and Long Lin

The purpose of this paper is to develop an effective approach to significantly improve the thermomechanical properties of shape memory polymer (SMP) nanocomposites that show fast…

Abstract

Purpose

The purpose of this paper is to develop an effective approach to significantly improve the thermomechanical properties of shape memory polymer (SMP) nanocomposites that show fast thermally responsive shape recovery.

Design/methodology/approach

Hexagonal boron nitrides (h-BNs) were incorporated into polymer matrix in an attempt to improve the thermal conductivity and thermally responsive shape recovery behaviour of SMP, respectively. Thermally actuated shape recovery behaviour was recorded and monitored instrumentally.

Findings

The results show that both glass transition temperature (Tg) and thermomechanical properties of the SMP nanocomposites have been progressively improved with increasing concentration of h-BNs. Analytical results also suggest that the fast-responsive recovery behaviour of the SMP nanocomposite incorporated with h-BNs was due to the increased thermal conductivity.

Research limitations/implications

A simple way for fabricating SMP nanocomposites with enhanced thermally responsive shape recovery based on the incorporation of h-BNs was developed.

Originality/value

The outcome of this study may help fabrication of SMP nanocomposites with fast responsive recovery behaviour.

Details

Pigment & Resin Technology, vol. 46 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 January 2020

Yongkun Wang, Yuting Zhang, Jinhua Zhang, Junjue Ye and Wenchao Tian

The purpose of this paper is to study the influence of calcium sulfate whiskers (CSWs) on the thermodynamic properties and shape memory properties of epoxy/cyanate ester shape…

Abstract

Purpose

The purpose of this paper is to study the influence of calcium sulfate whiskers (CSWs) on the thermodynamic properties and shape memory properties of epoxy/cyanate ester shape memory composites.

Design/methodology/approach

To improve the mechanical properties of shape memory cyanate ester (CE)/epoxy polymer (EP) resin, high performance CSWs were used to reinforce the thermo-induced shape memory CE/EP composites and the shape memory CSW/CE/EP composites were prepared by molding. The effect of CSW on the mechanical properties and shape memory behavior of shape memory CE/EP composites was investigated.

Findings

After CSW filled the shape memory CE/EP composites, the bending strength of the composites is greatly improved. When the content of CSW is 5 Wt.%, the bending strength of the composite is 107 MPa and the bending strength is increased by 29 per cent compared with bulk CE/EP resin. The glass transition temperature and storage modulus of the composites were improved in CE/EP resin curing system. However, when the content of CSW is more than 10 Wt.%, clusters are easily formed between whiskers and the voids between whiskers and matrix increase, which will lead to the decrease of mechanical properties of composites. The results of shape memory test show that the shape memory recovery time of the composites decreases with the decrease of CSW content at the same temperature. In addition, the shape recovery ratio of the composites decreased slightly with the increase of the number of thermo-induced shape memory cycles.

Research limitations/implications

A simple way for fabricating thermo-activated SMP composites has been developed by using CSW.

Originality/value

The outcome of this study will help to fabricate the SMP composites with high mechanical properties and the shape memory CSW/CE/EP composites are expected to be used in space deployable structures.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 July 2015

Haibao Lu, Yongtao Yao and Long Lin

This paper aims to create and to study multifunctional shape memory polymer (SMP) composites having temperature-sensing and actuating capabilities by embedding thermochromic…

Abstract

Purpose

This paper aims to create and to study multifunctional shape memory polymer (SMP) composites having temperature-sensing and actuating capabilities by embedding thermochromic particles within the polymer matrix.

Design/methodology/approach

The multifunctional materials were fabricated following a process consisting of blending (of the thermochromic particles and the SMP at various ratios), mixing, degasing, moulding and thermal curing, prepared by incorporating thermochromic particles within the polymer. The effect of the thermochromic particles on the thermomechanical properties and thermally responsive shape memory effect of the resulting multifunction SMP composites were characterised and interpreted.

Findings

It was found that exposure of the composites to temperatures above 70°C led to a pronounced change of their colour that was recorded by the thermal and electrical actuation approaches and was reproducibly reversible. It was also found that the colour of the composites was independent of the mechanical state of the SMP. Such effects enabled monitoring of the onset of the set/release temperature of the SMP matrix. Furthermore, the combination of thermochromic additive and the SMP resulted in significantly improved thermomechanical strength, absorption of infrared radiation and the temperature distribution of the SMP composites.

Research limitations/implications

The temperature-sensing and actuating capabilities of the polymeric shape memory composites developed through this study will help to extend the field of potential applications of such composites to fields including sensors, actuators, security labels and information dissemination, where colour indication is an advantageous feature.

Originality/value

The SMP composites capable of temperature sensing and actuating are novel.

Details

Pigment & Resin Technology, vol. 44 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 March 2016

Haibao Lu, Yongtao Yao, Jinying  Yin and Long Lin

This paper aims to study the synergistic effect of self-assembled carboxylic acid-functionalised carbon nanotube (CNT) and nafion/silica nanofibre nanopaper on the…

Abstract

Purpose

This paper aims to study the synergistic effect of self-assembled carboxylic acid-functionalised carbon nanotube (CNT) and nafion/silica nanofibre nanopaper on the electro-activated shape memory effect (SME) and shape recovery behaviour of shape memory polymer (SMP) nanocomposite.

Design/methodology/approach

Carboxylic acid-functionalised CNT and nafion/silica nanofibre are first self-assembled onto carbon fibre by means of deposition and electrospinning approaches, respectively, to form functionally graded nanopaper. The combination of carbon fibre and CNT is introduced to enable the actuation of the SME in SMP by means of Joule heating at a low electric voltage of 3.0-5.0 V.

Findings

Nafion/silica nanofibre is used to improve the shape recovery behaviour and performance of the SMP for enhanced heat transfer and electrical actuation effectiveness. Low electrical voltage actuation and high electrical actuation effectiveness of 32.5 per cent in SMP has been achieved.

Research limitations/implications

A simple way for fabricating electro-activated SMP nanocomposites has been developed by using functionally graded CNT and nafion/silica nanofibre nanopaper.

Originality/value

The outcome of this study will help to fabricate the SMP composite with high electrical actuation effectiveness under low electrical voltage actuation.

Details

Pigment & Resin Technology, vol. 45 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 385