Search results

1 – 10 of over 5000
Article
Publication date: 24 May 2022

Ahmed Benamor, Aissa Abidi-Saad, Ridha Mebrouk and Sarra Fatnassi

This study aims at investigating two-dimensional laminar flow of power-law fluids around three unconfined side-by-side cylinders.

Abstract

Purpose

This study aims at investigating two-dimensional laminar flow of power-law fluids around three unconfined side-by-side cylinders.

Design/methodology/approach

The numerical study is performed by solving the governing (continuity and momentum) equations using a finite volume-based code ANSYS Fluent. The numerical results have been presented for different combinations of the governing dimensionless parameters (dimensionless spacing, 1.2 = L = 4; Reynolds number, 0.1 = Re = 100; power-law index, 0.2 = n = 1.8). The dependence of the kinematic and macroscopic characteristics of the flow such as streamline patterns, distribution of the surface pressure coefficient, total drag coefficient with its components (pressure and friction) and total lift coefficient on these dimensionless parameters has been discussed in detail.

Findings

It is found that the separation of the flow and the apparition of the wake region accelerate as the dimensionless spacing decreases, the number of the cylinder increases and/or the fluid behavior moves from shear-thinning to Newtonian then to shear-thickening behavior. In addition, the distribution of the pressure coefficient on the surface of the cylinders presents a complex dependence on the fluid behavior index and Reynolds number when the dimensionless spacing between two adjacent cylinders is varied. At low Reynolds numbers, the drag coefficient of shear-thinning fluids is stronger than that of Newtonian fluids; this tendency decreases progressively with increasing of Re until a critical value; beyond the critical Re, the opposite trend is observed. The lift coefficient of the middle cylinder is null, whereas, the exterior cylinders experience opposite lift coefficients, which show a complex dependence on the dimensionless spacing, the Reynolds number and the power-law index.

Originality/value

The flow over bluff bodies is a practical engineering problem. In the literature, it can be seen that the previous studies on non-Newtonian fluids are limited to the flow over one or two cylinders (effect of an odd number of cylinders on each other). Besides that, the available results concerning the flow of Newtonian fluids over three cylinders are limited to the high Reynolds numbers region only. However, this work treats the flow of non-Newtonian power-law fluids past three circular cylinders in side-by-side arrangements under a wide range of Re. The outcome of the present study demonstrates that the augmentation of the geometry complexity to three cylinders (effect of pair surrounding cylinders on the surrounded ones in what concerns Von Karman Street phenomenon) causes a drastic change in the flow patterns and in the macroscopic characteristics. The present results may be used to predict the flow behavior around multiple side-by-side cylinders.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 June 2005

Suat Canbazoğlu and Fazıl Canbulut

The main objective of this study was to obtain the flow restricting capacity by determining their flow coefficients and to investigate the unsteady flow with low Reynolds number

1810

Abstract

Purpose

The main objective of this study was to obtain the flow restricting capacity by determining their flow coefficients and to investigate the unsteady flow with low Reynolds number in the flow‐restricting devices such as orifices and capillary tubes having small diameters.

Design/methodology/approach

There is an enormous literature on the flow of Newtonian fluids through capillaries and orifices particularly in many application fields of the mechanical and chemical engineering. But most of the experimental results in literature are given for steady flows at moderate and high Reynolds numbers (Re>500). In this study, the unsteady flow at low Reynolds number (10<Re<650) through flow‐restricting devices such as orifices and capillary tubes having very small diameters between 0.35 and 0.70 mm were experimentally investigated.

Findings

The capillary tubes have much more capillarity property with respect to equal diameter orifices. Increasing the ratio of capillary tube length to tube diameter and decreasing the ratio of orifice diameter to pipe diameter before orifice increase the throttling or restricting property of the orifices and the capillary tubes. The orifices can be preferred to the capillary tubes having the same diameter at the same system pressure for the hydraulic systems or circuits requiring small velocity variations. The capillary tubes provide higher pressure losses and they can be also used as hydraulic accumulators in hydraulic control devices to attenuate flow‐induced vibrations because of their large pressure coefficients. An important feature of the results obtained for capillary tubes and small orifices is that as the d/D for orifices increases and the L/d reduces for capillary tubes, higher values C are obtained and the transition from viscous to inertia‐controlled flow appears to take place at lower Reynolds numbers. This may be explained by the fact that for small orifices with high d/D ratios and for capillary tubes with small L/d ratios, the losses due to viscous shear are small. Another important feature of the results is that the least variations in C for small orifices and the higher variations in C for capillary tubes occur when the d/D and L/d ratios are smallest. This has favourable implications in hydraulic control devices since a constant value for the C may be assumed even at relatively low values of Re.

Originality/value

To the authors' knowledge, there is not enough information in the literature about the flow coefficients of unsteady flows through capillary tubes and small orifices at low Reynolds numbers. This paper fulfils this gap.

Details

Industrial Lubrication and Tribology, vol. 57 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 June 2009

Santanu De, K. Nagendra and K.N. Lakshmisha

The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid‐driven flow in a three‐dimensional…

4767

Abstract

Purpose

The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid‐driven flow in a three‐dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two‐dimensional (2D) cavity.

Design/methodology/approach

The second‐order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25‐4) and Reynolds numbers (0.01‐1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier‐Stokes (NS) equations and with available experimental data.

Findings

The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side‐walls in transverse direction (in 3D), due to which the vorticity in the core‐region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry‐plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid‐motion are observed; these are weak at low Reynolds numbers, but become quite strong at high Reynolds numbers.

Originality/value

The findings will be useful in the study of variety of enclosed fluid flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2019

Vahid Jaferian, Davood Toghraie, Farzad Pourfattah, Omid Ali Akbari and Pouyan Talebizadehsardari

The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode.

Abstract

Purpose

The purpose of this study is three-dimensional flow and heat transfer investigation of water/Al2O3 nanofluid inside a microchannel with different cross-sections in two-phase mode.

Design/methodology/approach

The effect of microchannel walls geometry (trapezoidal, sinusoidal and stepped microchannels) on flow characteristics and also changing circular cross section to trapezoidal cross section in laminar flow at Reynolds numbers of 50, 100, 300 and 600 were investigated. In this study, two-phase water/Al2O3 nanofluid is simulated by the mixture model, and the effect of volume fraction of nanoparticles on performance evaluation criterion (PEC) is studied. The accuracy of obtained results was compared with the experimental and numerical results of other similar papers.

Findings

Results show that in flow at lower Reynolds numbers, sinusoidal walls create a pressure drop in pure water flow which improves heat transfer to obtain PEC < 1. However, in sinusoidal and stepped microchannel with higher Reynolds numbers, PEC > 1. Results showed that the stepped microchannel had higher pressure drop, better thermal performance and higher PEC than other microchannels.

Originality/value

Review of previous studies showed that existing papers have not compared and investigated nanofluid in a two-phase mode in inhomogeneous circular, stepped and sinusoidal cross and trapezoidal cross-sections by considering the effect of changing channel shape, which is the aim of the present paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 December 2020

Suwimon Saneewong Na Ayuttaya

This study aims to present a numerical analysis of the behavior of the electric field and flow field characteristics under electrohydrodynamics (EHD) force. The influence of the…

Abstract

Purpose

This study aims to present a numerical analysis of the behavior of the electric field and flow field characteristics under electrohydrodynamics (EHD) force. The influence of the jet airflow under the EHD force is investigated when it impacts the inclined flat plate.

Design/methodology/approach

The high electrical voltage and angle of an inclined flat plate are tested in a range of 0–30 kV and 0–90°, respectively. In this condition, the air is set in a porous medium and the inlet jet airflow is varied from 0–2 m/s.

Findings

The results of this study show that the electric field line patterns increase with increasing the electrical voltage and it affects the electric force increasing. The angle of inclined flat plate and the boundary of the computational model are influenced by the electric field line patterns and electrical voltage surface. The electric field pattern is the difference in the fluid flow pattern. The fluid flow is more expanded and more concentrated with increasing the angle of an inclined flat plate, the electrical voltage and the inlet jet airflow. The velocity field ratio is increased with increasing the electrical voltage but it is decreased with increasing the angle of the inclined flat plate and the inlet jet airflow.

Originality/value

The maximum Reynolds number, the maximum velocity field and the maximum cell Reynolds number are increased with increasing the electrical voltage, the inlet jet airflow and the angle of the inclined flat plate. In addition, the cell Reynolds number characteristics are more concentrated and more expanded with increasing the electrical voltage. The pattern of numerical results from the cell Reynolds number characteristics is similar to the pattern of the fluid flow characteristics. Finally, a similar trend of the maximum velocity field has appeared for experimental and numerical results so both techniques are in good agreement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1996

T.S. LEE, R.S. TAN and X.P. XU

The time development of the symmetrical standing zones of recirculation, which is formed in the early stages of the impulsively started laminar flow over the square cylinder, have…

Abstract

The time development of the symmetrical standing zones of recirculation, which is formed in the early stages of the impulsively started laminar flow over the square cylinder, have been studied numerically. The Reynolds number considered ranges from 25 to 1,000. Main flow characteristics of the developing recirculation region aft of the square cylinder and its interaction with the separating shear layer from the leading edges are studied through the developing streamlines. Other flow characteristics are analysed in terms of pressure contours, surface pressure coefficient, wake length and drag coefficient. Four main‐flow types and three subflow types of regimes are identified through a detailed analysis of the evolution of the flow characteristics. Typically, for a given Reynolds number, it is noted that flow starts with no separation (type I main‐flow). As time advances, symmetrical standing zone of recirculation develops aft of the square cylinder (type II main‐flow). The rate of growth in width, length and structure of the aft end eddies (sub‐flow (a)) depends on the Reynolds number. In time, separated flow from the leading edges of the square cylinder also develops (type III main‐flow) and forms growing separation bubbles (sub‐flow (b)) on the upper and lower surfaces of the square cylinder. As time advances, the separation bubbles on the upper and lower surfaces of the cylinder grow towards downstream regions and eventually merge with the swelling symmetrical eddies aft of the cylinder. This merging of the type II and type III flows created a complex type IV main‐flow regime with a disturbed tertiary flow zone (sub‐flow (c)) near the merging junction. Eventually, depending on the Reynolds number, the flow develops into a particular category of symmetrical standing recirculatory flow of specific characteristics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 January 2011

Sintu Singha and K.P. Sinhamahapatra

The purpose of this paper is to simulate the flow of a conducting fluid past a circular cylinder placed centrally in a channel subjected to an imposed transverse magnetic field to…

Abstract

Purpose

The purpose of this paper is to simulate the flow of a conducting fluid past a circular cylinder placed centrally in a channel subjected to an imposed transverse magnetic field to study the effect of a magnetic field on vortex shedding at different Reynolds numbers varying from 50 to 250.

Design/methodology/approach

The two‐dimensional incompressible laminar viscous flow equations are solved using a second‐order implicit unstructured collocated grid finite volume method.

Findings

An imposed transverse magnetic field markedly reduces the unsteady lift amplitude indicating a reduction in the strength of the shed vortices. It is observed that the periodic vortex shedding at the higher Reynolds numbers can be completely suppressed if a sufficiently strong magnetic field is imposed. The required magnetic field strength to suppress shedding increases with Reynolds number. The simulation shows that the separated zone behind the cylinder in a steady flow is reduced as the magnetic field strength is increased.

Originality/value

In this paper, due attention is given to resolve and study the unsteady cylinder wake and its interaction with the shear‐layer on the channel wall in the presence of a magnetic field. A critical value of the Hartmann number for complete suppression of the shedding at a given Reynolds number is found.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 1998

T.S. Lee

Characteristics of the development of an impulsively started flow around an expanded trapezoidal cylinder were studied numerically. A stream function‐vorticity formulation in a…

Abstract

Characteristics of the development of an impulsively started flow around an expanded trapezoidal cylinder were studied numerically. A stream function‐vorticity formulation in a body coordinate system was used to describe the unsteady flow field. The inflow Reynolds number considered ranges from 25 to 1,000. Pressure contours, surface pressure coefficient and drag coefficient were studied through the streamline flow field. Main‐flow and sub‐flow regimes are identified through an analysis of the evolution of the flow characteristics. Typically, for a given expanded trapezoidal cylinder, it is noted that flow starts with minimum separation at the aft end. As time advances, symmetrical standing zone of recirculation develops aft of the cylinder. The rate of growth in width, length and structure of the aft end eddies depends on the Reynolds number. As time advances and at higher Reynolds numbers, separated flow from the leading edges of the trapezoidal cylinder develops along the upper and lower inclined surfaces of the trapezoidal cylinder. The separation bubbles on the upper and lower inclined surfaces of the cylinder grow towards the downstream regions with time and eventually merge with the swelling symmetrical eddies aft of the cylinder. This merging of the flows created a complex flow regime with a disturbed tertiary flow zone near the merging junction. For the flows considered here, eventually, depending on the Reynolds number and the expanded angle of the trapezoidal cylinder, the flow field develops into a specific category of symmetrical standing recirculatory flow with its own distinct characteristics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 July 2021

Mustafa Serdar Genç, Hacımurat Demir, Mustafa Özden and Tuna Murat Bodur

The purpose of this exhaustive experimental study is to investigate the fluid-structure interaction in the flexible membrane wings over a range of angles of attack for various…

Abstract

Purpose

The purpose of this exhaustive experimental study is to investigate the fluid-structure interaction in the flexible membrane wings over a range of angles of attack for various Reynolds numbers.

Design/methodology/approach

In this paper, an experimental study on fluid-structure interaction of flexible membrane wings was presented at Reynolds numbers of 2.5 × 104, 5 × 104 and 7.5 × 104. In the experimental studies, flow visualization, velocity and deformation measurements for flexible membrane wings were performed by the smoke-wire technique, multichannel constant temperature anemometer and digital image correlation system, respectively. All experimental results were combined and fluid-structure interaction was discussed.

Findings

In the flexible wings with the higher aspect ratio, higher vibration modes were noticed because the leading-edge separation was dominant at lower angles of attack. As both Reynolds number and the aspect ratio increased, the maximum membrane deformations increased and the vibrations became visible, secondary vibration modes were observed with growing the leading-edge vortices at moderate angles of attack. Moreover, in the graphs of the spectral analysis of the membrane displacement and the velocity; the dominant frequencies coincided because of the interaction of the flow over the wings and the membrane deformations.

Originality/value

Unlike available literature, obtained results were presented comparatively using the sketches of the smoke-wire photographs with deformation measurement or turbulence statistics from the velocity measurements. In this study, fluid-structure interaction and leading-edge vortices of membrane wings were investigated in detail with increasing both Reynolds number and the aspect ratio.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 December 2019

Aslesha Bodavula, Rajesh Yadav and Ugur Guven

The purpose of this paper is to investigate the effect of surface protrusions on the flow unsteadiness of NACA 0012 at a Reynolds number of 100,000.

Abstract

Purpose

The purpose of this paper is to investigate the effect of surface protrusions on the flow unsteadiness of NACA 0012 at a Reynolds number of 100,000.

Design/methodology/approach

Effect of protrusions is investigated through numerical simulation of two-dimensional Navier–Stokes equations using a finite volume solver. Turbulent stresses are resolved through the transition Shear stress transport (four-equation) turbulence model.

Findings

The small protrusion located at 0.05c and 0.1c significantly improve the lift coefficient by up to 36% in the post-stall regime. It also alleviates the leading edge stall. The larger protrusions increase the drag significantly along with significant degradation of lift characteristics in the pre-stall regime as well. The smaller protrusions also increase the frequency of the vortex shedding.

Originality/value

The effect of macroscopic protrusions or deposits in rarely investigated. The delay in stall shown by smaller protrusions can be beneficial to micro aerial vehicles. The smaller protrusions increase the frequency of the vortex shedding, and hence, can be used as a tool to enhance energy production for energy harvesters based on vortex-induced vibrations and oscillating wing philosophy.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 5000