Search results

1 – 10 of 147
Open Access
Article
Publication date: 27 February 2023

Vasileios Stamatis, Michail Salampasis and Konstantinos Diamantaras

In federated search, a query is sent simultaneously to multiple resources and each one of them returns a list of results. These lists are merged into a single list using the…

Abstract

Purpose

In federated search, a query is sent simultaneously to multiple resources and each one of them returns a list of results. These lists are merged into a single list using the results merging process. In this work, the authors apply machine learning methods for results merging in federated patent search. Even though several methods for results merging have been developed, none of them were tested on patent data nor considered several machine learning models. Thus, the authors experiment with state-of-the-art methods using patent data and they propose two new methods for results merging that use machine learning models.

Design/methodology/approach

The methods are based on a centralized index containing samples of documents from all the remote resources, and they implement machine learning models to estimate comparable scores for the documents retrieved by different resources. The authors examine the new methods in cooperative and uncooperative settings where document scores from the remote search engines are available and not, respectively. In uncooperative environments, they propose two methods for assigning document scores.

Findings

The effectiveness of the new results merging methods was measured against state-of-the-art models and found to be superior to them in many cases with significant improvements. The random forest model achieves the best results in comparison to all other models and presents new insights for the results merging problem.

Originality/value

In this article the authors prove that machine learning models can substitute other standard methods and models that used for results merging for many years. Our methods outperformed state-of-the-art estimation methods for results merging, and they proved that they are more effective for federated patent search.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

181

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 29 September 2022

Manju Priya Arthanarisamy Ramaswamy and Suja Palaniswamy

The aim of this study is to investigate subject independent emotion recognition capabilities of EEG and peripheral physiological signals namely: electroocoulogram (EOG)…

1055

Abstract

Purpose

The aim of this study is to investigate subject independent emotion recognition capabilities of EEG and peripheral physiological signals namely: electroocoulogram (EOG), electromyography (EMG), electrodermal activity (EDA), temperature, plethysmograph and respiration. The experiments are conducted on both modalities independently and in combination. This study arranges the physiological signals in order based on the prediction accuracy obtained on test data using time and frequency domain features.

Design/methodology/approach

DEAP dataset is used in this experiment. Time and frequency domain features of EEG and physiological signals are extracted, followed by correlation-based feature selection. Classifiers namely – Naïve Bayes, logistic regression, linear discriminant analysis, quadratic discriminant analysis, logit boost and stacking are trained on the selected features. Based on the performance of the classifiers on the test set, the best modality for each dimension of emotion is identified.

Findings

 The experimental results with EEG as one modality and all physiological signals as another modality indicate that EEG signals are better at arousal prediction compared to physiological signals by 7.18%, while physiological signals are better at valence prediction compared to EEG signals by 3.51%. The valence prediction accuracy of EOG is superior to zygomaticus electromyography (zEMG) and EDA by 1.75% at the cost of higher number of electrodes. This paper concludes that valence can be measured from the eyes (EOG) while arousal can be measured from the changes in blood volume (plethysmograph). The sorted order of physiological signals based on arousal prediction accuracy is plethysmograph, EOG (hEOG + vEOG), vEOG, hEOG, zEMG, tEMG, temperature, EMG (tEMG + zEMG), respiration, EDA, while based on valence prediction accuracy the sorted order is EOG (hEOG + vEOG), EDA, zEMG, hEOG, respiration, tEMG, vEOG, EMG (tEMG + zEMG), temperature and plethysmograph.

Originality/value

Many of the emotion recognition studies in literature are subject dependent and the limited subject independent emotion recognition studies in the literature report an average of leave one subject out (LOSO) validation result as accuracy. The work reported in this paper sets the baseline for subject independent emotion recognition using DEAP dataset by clearly specifying the subjects used in training and test set. In addition, this work specifies the cut-off score used to classify the scale as low or high in arousal and valence dimensions. Generally, statistical features are used for emotion recognition using physiological signals as a modality, whereas in this work, time and frequency domain features of physiological signals and EEG are used. This paper concludes that valence can be identified from EOG while arousal can be predicted from plethysmograph.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 14 December 2021

Mariam Elhussein and Samiha Brahimi

This paper aims to propose a novel way of using textual clustering as a feature selection method. It is applied to identify the most important keywords in the profile…

Abstract

Purpose

This paper aims to propose a novel way of using textual clustering as a feature selection method. It is applied to identify the most important keywords in the profile classification. The method is demonstrated through the problem of sick-leave promoters on Twitter.

Design/methodology/approach

Four machine learning classifiers were used on a total of 35,578 tweets posted on Twitter. The data were manually labeled into two categories: promoter and nonpromoter. Classification performance was compared when the proposed clustering feature selection approach and the standard feature selection were applied.

Findings

Radom forest achieved the highest accuracy of 95.91% higher than similar work compared. Furthermore, using clustering as a feature selection method improved the Sensitivity of the model from 73.83% to 98.79%. Sensitivity (recall) is the most important measure of classifier performance when detecting promoters’ accounts that have spam-like behavior.

Research limitations/implications

The method applied is novel, more testing is needed in other datasets before generalizing its results.

Practical implications

The model applied can be used by Saudi authorities to report on the accounts that sell sick-leaves online.

Originality/value

The research is proposing a new way textual clustering can be used in feature selection.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 9 December 2022

Xuwei Pan, Xuemei Zeng and Ling Ding

With the continuous increase of users, resources and tags, social tagging systems gradually present the characteristics of “big data” such as large number, fast growth, complexity…

Abstract

Purpose

With the continuous increase of users, resources and tags, social tagging systems gradually present the characteristics of “big data” such as large number, fast growth, complexity and unreliable quality, which greatly increases the complexity of recommendation. The contradiction between the efficiency and effectiveness of recommendation service in social tagging is increasingly becoming prominent. The purpose of this study is to incorporate topic optimization into collaborative filtering to enhance both the effectiveness and the efficiency of personalized recommendations for social tagging.

Design/methodology/approach

Combining the idea of optimization before service, this paper presents an approach that incorporates topic optimization into collaborative recommendations for social tagging. In the proposed approach, the recommendation process is divided into two phases of offline topic optimization and online recommendation service to achieve high-quality and efficient personalized recommendation services. In the offline phase, the tags' topic model is constructed and then used to optimize the latent preference of users and the latent affiliation of resources on topics.

Findings

Experimental evaluation shows that the proposed approach improves both precision and recall of recommendations, as well as enhances the efficiency of online recommendations compared with the three baseline approaches. The proposed topic optimization–incorporated collaborative recommendation approach can achieve the improvement of both effectiveness and efficiency for the recommendation in social tagging.

Originality/value

With the support of the proposed approach, personalized recommendation in social tagging with high quality and efficiency can be achieved.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Open Access
Article
Publication date: 29 December 2021

Martin Rakús, Peter Farkaš and Tomáš Páleník

The purpose of this paper is to directly link information technology (IT) education with real-world phenomena.

Abstract

Purpose

The purpose of this paper is to directly link information technology (IT) education with real-world phenomena.

Design/methodology/approach

The selected objectives are achieved by modeling line of sight (LOS) and nonline of sight (NLOS) mobile channels using corresponding distributions. Within the described experiments, students verify whether modeled generators generate random variables accordingly to the selected distribution. The results of observations are directly compared with theoretical expectations. The methodology was evaluated by students via questionnaires.

Findings

The results show that the proposed methodology can help graduate or undergraduate students better comprehend lectured material from mobile communications or mathematical statistics.

Originality/value

The hands on experience using the EMONA system make the approach original.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 29 August 2023

Qingfeng Xu, Hèrm Hofmeyer and Johan Maljaars

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations…

Abstract

Purpose

Simulations exist for the prediction of the behaviour of building structural systems under fire, including two-way coupled fire-structure interaction. However, these simulations do not include detailed models of the connections, whereas these connections may impact the overall behaviour of the structure. Therefore, this paper proposes a two-scale method to include screw connections.

Design/methodology/approach

The two-scale method consists of (a) a global-scale model that models the overall structural system and (b) a small-scale model to describe a screw connection. Components in the global-scale model are connected by a spring element instead of a modelled screw, and the stiffness of this spring element is predicted by the small-scale model, updated at each load step. For computational efficiency, the small-scale model uses a proprietary technique to model the behaviour of the threads, verified by simulations that model the complete thread geometry, and validated by existing pull-out experiments. For four screw failure modes, load-deformation behaviour and failure predictions of the two-scale method are verified by a detailed system model. Additionally, the two-scale method is validated for a combined load case by existing experiments, and demonstrated for different temperatures. Finally, the two-scale method is illustrated as part of a two-way coupled fire-structure simulation.

Findings

It was shown that proprietary ”threaded connection interaction” can predict thread relevant failure modes, i.e. thread failure, shank tension failure, and pull-out. For bearing, shear, tension, and pull-out failure, load-deformation behaviour and failure predictions of the two-scale method correspond with the detailed system model and Eurocode predictions. Related to combined load cases, for a variety of experiments a good correlation has been found between experimental and simulation results, however, pull-out simulations were shown to be inconsistent.

Research limitations/implications

More research is needed before the two-scale method can be used under all conditions. This relates to the failure criteria for pull-out, combined load cases, and temperature loads.

Originality/value

The two-scale method bridges the existing very detailed small-scale screw models with present global-scale structural models, that in the best case only use springs. It shows to be insightful, for it contains a functional separation of scales, revealing their relationships, and it is computationally efficient as it allows for distributed computing. Furthermore, local small-scale non-convergence (e.g. a screw failing) can be handled without convergence problems in the global-scale structural model.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 9 May 2022

Khalid Iqbal and Muhammad Shehrayar Khan

In this digital era, email is the most pervasive form of communication between people. Many users become a victim of spam emails and their data have been exposed.

9240

Abstract

Purpose

In this digital era, email is the most pervasive form of communication between people. Many users become a victim of spam emails and their data have been exposed.

Design/methodology/approach

Researchers contribute to solving this problem by a focus on advanced machine learning algorithms and improved models for detecting spam emails but there is still a gap in features. To achieve good results, features also play an important role. To evaluate the performance of applied classifiers, 10-fold cross-validation is used.

Findings

The results approve that the spam emails are correctly classified with the accuracy of 98.00% for the Support Vector Machine and 98.06% for the Artificial Neural Network as compared to other applied machine learning classifiers.

Originality/value

In this paper, Point-Biserial correlation is applied to each feature concerning the class label of the University of California Irvine (UCI) spambase email dataset to select the best features. Extensive experiments are conducted on selected features by training the different classifiers.

Details

Applied Computing and Informatics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 2 April 2024

Koraljka Golub, Osma Suominen, Ahmed Taiye Mohammed, Harriet Aagaard and Olof Osterman

In order to estimate the value of semi-automated subject indexing in operative library catalogues, the study aimed to investigate five different automated implementations of an…

Abstract

Purpose

In order to estimate the value of semi-automated subject indexing in operative library catalogues, the study aimed to investigate five different automated implementations of an open source software package on a large set of Swedish union catalogue metadata records, with Dewey Decimal Classification (DDC) as the target classification system. It also aimed to contribute to the body of research on aboutness and related challenges in automated subject indexing and evaluation.

Design/methodology/approach

On a sample of over 230,000 records with close to 12,000 distinct DDC classes, an open source tool Annif, developed by the National Library of Finland, was applied in the following implementations: lexical algorithm, support vector classifier, fastText, Omikuji Bonsai and an ensemble approach combing the former four. A qualitative study involving two senior catalogue librarians and three students of library and information studies was also conducted to investigate the value and inter-rater agreement of automatically assigned classes, on a sample of 60 records.

Findings

The best results were achieved using the ensemble approach that achieved 66.82% accuracy on the three-digit DDC classification task. The qualitative study confirmed earlier studies reporting low inter-rater agreement but also pointed to the potential value of automatically assigned classes as additional access points in information retrieval.

Originality/value

The paper presents an extensive study of automated classification in an operative library catalogue, accompanied by a qualitative study of automated classes. It demonstrates the value of applying semi-automated indexing in operative information retrieval systems.

Details

Journal of Documentation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0022-0418

Keywords

Open Access
Article
Publication date: 10 April 2024

Sigtona Halrynjo and Mari Teigen

The European Union (EU) has recently adopted gender quotas for corporate boards (CBQ), anticipating ripple effects on women’s careers in the companies concerned, as well as…

Abstract

Purpose

The European Union (EU) has recently adopted gender quotas for corporate boards (CBQ), anticipating ripple effects on women’s careers in the companies concerned, as well as throughout the economy. The purpose of this paper is to investigate whether CBQ has spurred ripple effects and discuss mechanisms hindering or facilitating women’s occupancy of top executive positions.

Design/methodology/approach

Norway was the first country in the world to introduce CBQ in 2003, with full effect from 2008. The policy requires company boards to be composed of 40% of each gender. Drawing on original data mapping boards and executive committees in Norway’s 200 largest companies, the authors analyze the association between CBQ and the gender composition of executive management almost 15 years after the full implementation. The data include both companies covered by the CBQ and large companies not covered.

Findings

The investigation does not find a positive association between CBQ and more women in executive positions. Thus, the ripple effect hypothesis of CBQ is not supported. CBQ may have contributed to an increased awareness of gender imbalances, yet these findings indicate that to achieve more gender balance in executive positions, scholars and practitioners may need to focus more on gendered conditions and processes in organizations and society throughout executive careers than on the gender composition of boards.

Originality/value

This paper provides empirical analyses of original data 15 years after the implementation of CBQ. The authors further contribute to scholarly debate by identifying and discussing possible mechanisms that explain how requiring more women on corporate boards may – or may not – have ripple effects on executive management.

Details

Gender in Management: An International Journal , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2413

Keywords

Access

Only Open Access

Year

Content type

Earlycite article (147)
1 – 10 of 147