Search results

1 – 10 of over 25000
Article
Publication date: 8 May 2024

Mengyao Fan, Xiaojing Ma, Lin Li, Xinpeng Xiao and Can Cheng

In this paper, the complex flow evaporation process of droplet impact on the liquid film in a horizontal falling film evaporator is numerically studied based on smoothed particle…

Abstract

Purpose

In this paper, the complex flow evaporation process of droplet impact on the liquid film in a horizontal falling film evaporator is numerically studied based on smoothed particle hydrodynamics (SPH) method. The purpose of this paper is to present the mechanism of the water treatment problem of the falling film evaporation for the high salinity mine water in Xinjiang region of China.

Design/methodology/approach

To effectively characterize the phase transition problem, the particle splitting and merging techniques are introduced. And the particle absorbing layer is proposed to improve the nonphysical aggregation phenomenon caused by the continuous splitting of gas phase particles. The multiresolution model and the artificial viscosity are adopted.

Findings

The SPH model is validated qualitatively with experiment results and then applied to the evaporation of the droplet impact on the liquid film. It is shown that the larger single droplet initial velocity and the smaller single droplet initial temperature difference between the droplet and liquid film improve the liquid film evaporation. The heat transfer effect of a single droplet is preferable to that of multiple droplets.

Originality/value

A multiphase SPH model for evaporation after the droplet impact on the liquid film is developed and validated. The effects of different factors on liquid film evaporation, including single droplet initial velocity, single droplet initial temperature and multiple droplets are investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1992

J.I. RAMOS

A domain‐adaptive technique which maps the unknown, time‐dependent, curvilinear geometry of annular liquid jets into a unit square is used to determine the steady state mass…

Abstract

A domain‐adaptive technique which maps the unknown, time‐dependent, curvilinear geometry of annular liquid jets into a unit square is used to determine the steady state mass absorption rate and the collapse of annular liquid jets as functions of the Froude, Peclet and Weber numbers, nozzle exit angle, initial pressure and temperature of the gas enclosed by the liquid, gas concentration at the nozzle exit, ratio of solubilities at the inner and outer interfaces of the annular jet, pressure of the gas surrounding the liquid, and annular jet's thickness‐to‐radius ratio at the nozzle exit. The domain‐adaptive technique yields a system of non‐linearly coupled integrodifferential equations for the fluid dynamics of and the gas concentration in the annular jet, and an ordinary differential equation for the time‐dependent convergence length. An iterative, block‐bidiagonal technique is used to solve the fluid dynamics equations, while the gas concentration equation is solved by means of a line Gauss‐Seidel method. It is shown that the jet's collapse rate increases as the Weber number, nozzle exit angle, temperature of the gas enclosed by the annular jet, and pressure of the gas surrounding the jet are increased, but decreases as the Froude and Peclet numbers and annular jet's thickness‐to‐radius ratio at the nozzle exit are increased. It is also shown that, if the product of the inner‐to‐outer surface solubility ratio and the initial pressure ratio is smaller than one, mass is absorbed at the outer surface of the annular jet, and the mass and volume of the gas enclosed by the jet increase with time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 February 2014

Zhang Guoyuan and Yan Xiu-Tian

A hybrid bearing of advanced cryogenic rocket engine turbopump is designed. For cryogenic fluid propellants (such as liquid oxygen) as the lubrication of bearing, bearings…

Abstract

Purpose

A hybrid bearing of advanced cryogenic rocket engine turbopump is designed. For cryogenic fluid propellants (such as liquid oxygen) as the lubrication of bearing, bearings operating close to liquid-vapor region (near the critical point or slightly sub-cooled) are likely to develop a two phase flow region. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, an all liquid, liquid-vapor mixture, and all vapor, i.e. a continuous vaporization bulk flow model of density and viscosity for mixture fluid, is presented, and the general Reynolds equation and energy equation with two phase flow as lubricants is solved. The static and dynamic performance of a 50-mm-radius hybrid bearing are obtained under 20,000 rpm speed and 10 MPa supply pressure.

Findings

The results show that the variations of performance of bearing operating under cryogenic liquid oxygen are not bounded by the all liquid and all vapor cases in the liquid-vapor mixture range. There behaviours are attributed to the large change in the compressibility character of the flow.

Research limitations/implications

For validating the correctness of analytical model, an experimental study on the liquid-vapor nitrogen mixture lubricated hybrid journal bearings is being carried out where low-viscosity nitrogen was selected as the lubricant for the sake of safety. Soon after, the authors will discuss the results and publish them in the new papers.

Originality/value

An all liquid, liquid-vapor mixture, and all vapor, i.e. a continuous vaporization bulk flow model of density and viscosity for mixture fluid, is presented. The static and dynamic performance of hybrid bearings with two phase flow as lubricants are obtained.

Details

Industrial Lubrication and Tribology, vol. 66 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 June 2013

Dong Jiang, Litian Hu and Dapeng Feng

The purpose of this paper is to synthesize a novel kind of crown‐type phosphate ionic liquids with better tribological properties for steel/Al system. The anions of crown‐type…

Abstract

Purpose

The purpose of this paper is to synthesize a novel kind of crown‐type phosphate ionic liquids with better tribological properties for steel/Al system. The anions of crown‐type phosphate ionic liquids contain no F element, which are non‐corrosive to metal.

Design/methodology/approach

To improve the tribological properties of ionic liquid lubricants for the extremely difficult system of the steel‐against‐aluminum metal couple, novel crown‐type phosphate ionic liquids were prepared. The tribological properties of the crown‐type phosphate ionic liquids were evaluated at different loads and frequencies on an Optical SRV oscillating friction and wear tester. The morphology and chemical compounds of the wear scars were investigated by scanning electron microscope (SEM) and X‐ray photoelectron spectroscopy (XPS).

Findings

Compared with conventional ionic liquids, the novel crown‐type phosphate ionic liquids prepared in the present work exhibit a more excellent anti‐wear ability for steel/Al2024 contact at different loads and frequencies. By the morphological analysis with SEM, less debris was observed in the worn surface lubricated with crown‐type phosphate ionic liquids, though more debris was observed when lubricated with LB106 and LP106. By the XPS analysis, boundary lubrication film composed of aluminum (III) oxide, organometallic compounds, and silicon aluminum phosphate were found in the worn surface. Namely, the tribological behaviors of the crown‐type phosphate ionic liquids could be attributed to their stronger adsorption and tribochemical interactions with the Al alloys.

Research limitations/implications

Because of the higher mean friction coefficients of crown‐type phosphate ionic liquids in the research, researchers are encouraged to modify their structure for better tribological properties.

Practical implications

The crown‐type phosphate ionic liquid exhibited better anti‐wear performance for steel/aluminum contact than the conventional ionic liquids containing F element. This will expand the application of high strength aluminum alloys.

Originality/value

The phosphate ionic liquid is a non‐corrosive liquid and would not cause metal corrosion. Also, the tribological properties of crown‐type phosphate ionic liquid with steel/aluminum contact are better than that of conventional ionic liquids. By the designing of molecular structure, new phosphate ionic liquids will exhibit excellent tribological properties: lower wear volume and lower friction coefficient.

Details

Industrial Lubrication and Tribology, vol. 65 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 September 2009

Yiqing Wang, Wanhua Zhao, Yucheng Ding, Zhongyun He and Bingheng Lu

The purpose of this paper is to detect and control the liquid‐level of stereolithography apparatus precisely.

Abstract

Purpose

The purpose of this paper is to detect and control the liquid‐level of stereolithography apparatus precisely.

Design/methodology/approach

A brightness‐variable laser source is adopted to remove the computational error of divider and a closed‐loop circuit is set to measure the terminal voltage directly proportional to the output current of photosensitive devices. It employs a sinking‐block device to control the liquid‐level.

Findings

The precise calibration result of this detecting device indicates that the resolution of the liquid‐level detection can reach ±1.5 μm.

Originality/value

This sinking‐block style liquid‐level control device can allow for the liquid‐level wave reduced from ±45 to ±15 μm.

Details

Rapid Prototyping Journal, vol. 15 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 October 2008

Kai Yang, Ming‐Li Jiao, Yi‐Song Chen, Jun Li and Wei‐Yuan Zhang

The purpose of this paper is to explore the heat transfer and establish a heat transfer model of an extravehicular liquid cooling garment based on a thermal manikin covered with…

Abstract

Purpose

The purpose of this paper is to explore the heat transfer and establish a heat transfer model of an extravehicular liquid cooling garment based on a thermal manikin covered with soft simulated skin.

Design/methodology/approach

The thermal manikin applied in this study was a copper manikin, typical of which was its soft simulated skin – a newly thermoplastic elastomer material. Based on this novel thermal manikin, the heat transfer analysis of an extravehicular liquid cooling garment was performed. To satisfy the practical engineering application and simplify analysis, the hypotheses were proposed, and then the heat transfer model was established by heat transfer theory, in which the heat exchange equation of the liquid cooling garment with the thermal manikin and with the air layer, and the garment's total heat dissipating capacity were derived.

Findings

The verification experiments performed in a climatic chamber by a thermal manikin wearing a liquid cooling garment at different surface temperatures of the thermal manikin show that the modeling value fits well with the experimental value, and the heat transfer model of the liquid cooling garment has a high accuracy. Meanwhile, the relationship between the heat‐dissipating capacity of the liquid cooling garment and its design parameters – inlet temperature and liquid velocity – is suggested as being based on the heat transfer model.

Originality/value

The paper shows that it is an effective method to control the heat‐dissipating capacity of a liquid cooling garment by changing the inlet temperature to some degree, but not by changing the liquid velocity.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Open Access
Book part
Publication date: 4 May 2018

Heriyanti, Lenny Marlinda, Rayandra Asyhar, Sutrisno and Marfizal

Purpose – This work aims to study the treatment of adsorbant on the increasing liquid hydrocarbon quality produced by pyrolysis low density polyethylene (LDPE) plastic waste at…

Abstract

Purpose – This work aims to study the treatment of adsorbant on the increasing liquid hydrocarbon quality produced by pyrolysis low density polyethylene (LDPE) plastic waste at low temperature. The hydrocarbon distribution, physicochemical properties and emission test were also studied due to its application in internal combustion engine. This research uses pure Calcium carbonate (CaCO3) and pure activated carbon as adsorbant, LDPE type clear plastic samples with control variable that is solar gas station.

Design/Methodology/Approach – LDPE plastic waste of 10 kg were vaporized in the thermal cracking batch reactor using LPG 12 kg as fuel at range temperature from 100 to 300°C and condensed into liquid hydrocarbon. Furthermore, this product was treated with the mixed CaCO3 and activated carbon as adsorbants to decrease contaminant material.

Findings – GC-MS identified the presence of carbon chain in the range of C6–C44 with 24.24% of hydrocarbon compounds in the liquid. They are similar to diesel (C6–C14). The 30% of liquid yields were found at operating temperature of 300°C. The calorific value of liquid was 46.021 MJ/Kg. This value was 5.07% higher than diesel as control.

Originality/Value – Hydrocarbon compounds in liquid produced by thermal cracking at a low temperature was similar to liquid from a catalytic process.

Details

Proceedings of MICoMS 2017
Type: Book
ISBN:

Keywords

Book part
Publication date: 17 September 2020

Shaun Best

Abstract

Details

The Emerald Guide to Zygmunt Bauman
Type: Book
ISBN: 978-1-83909-741-6

Article
Publication date: 28 June 2023

Liu Fuyu, Yu Bo, Li Yongfan, Ren Baojie, Hao Muming, Li Zhentao and Li Xiaozu

The purpose of this paper is to study the dynamic characteristics of mechanical face seals with liquid-lubricated inclined elliptical grooves.

Abstract

Purpose

The purpose of this paper is to study the dynamic characteristics of mechanical face seals with liquid-lubricated inclined elliptical grooves.

Design/methodology/approach

The steady-state and perturbation Reynolds control equations of liquid films were established. The film pressure and the liquid film dynamic coefficients were obtained, impacts of groove structures on the liquid film dynamic characteristic coefficients were analyzed.

Findings

The analysis results indicate that the axial dynamic stiffness and damping coefficients of the liquid film seal with inclined elliptical grooves are far greater than those of the angular directions. Furthermore, the dynamic stiffness coefficient of the liquid film with the nonclosed inclined elliptical grooves is higher than those with the closed grooves, whereas the dynamic damping coefficient of the liquid film is lower.

Originality/value

The effects of inclined elliptical groove structures on the dynamic characteristics of the liquid film seal are investigated. The results presented are expected to enrich the theoretical basis of optimizing the dynamic performance of liquid film seals with textures.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 March 2023

Nilufar Allayarova, Djavlonbek Kadirov, Jayne Krisjanous and Micael-Lee Johnstone

The purpose of this paper is to explore the tendencies of liquid consumption in Muslim communities and analyse its impact on Muslims’ consumption practices from the holistic…

Abstract

Purpose

The purpose of this paper is to explore the tendencies of liquid consumption in Muslim communities and analyse its impact on Muslims’ consumption practices from the holistic perspective. Liquid consumption refers to a transient and less-materialised mode of consumption that requires both minimal attachment to possessions and hybrid ownership.

Design/methodology/approach

This is a conceptual paper that is based on the distinction between Islam as a holistic perspective and Islamic practice as it is applied in different contexts and situations. The Continual Drift Adjustment (CDA) framework of Muslim consumers’ behaviour is developed to be deployed as an analysis framework.

Findings

The CDA framework maintains that some problematic cases of Muslim consumption behaviours indicate the drift towards disbalance. Depending on their nature, liquid consumption practices can have different impacts on the drift. Liquid consumption practices underscored by instrumental dissemblance, intellectual insecurity and spiritual scepticism intensify the drift, whereas the incorporation of spiritual sincerity, faithful submission and existential gratefulness into practices and behaviour helps to attenuate the drift.

Research limitations/implications

This research contributes to the theory of liquid consumption by incorporating the religious perspective. Liquid consumption in Islam is a complex area of research, specifically considering the ambivalent meanings of liquidity in Islamic thought.

Practical implications

Marketers of liquid consumption solutions must be aware of these offerings’ double-edged impact on the well-being of Muslim communities. Muslim consumers should be guided towards spiritual sincerity, faithful submission and existential gratefulness in the best way possible, although it must be noted that the customary techniques of marketing would lean towards stimulating the disbalance.

Originality/value

This research is unique because it deals with a topic that has not been researched in the Islamic marketing discipline to this date.

1 – 10 of over 25000