Search results

1 – 10 of over 1000
Article
Publication date: 1 October 2018

Yunsong Shi, Wei Zhu, Chunze Yan, Jinsong Yang and Zhidao Xia

This study aims to report the preparation, selective laser sintering (SLS) processing and properties of a new nylon elastomer powder. The effects of solvent, dissolution…

Abstract

Purpose

This study aims to report the preparation, selective laser sintering (SLS) processing and properties of a new nylon elastomer powder. The effects of solvent, dissolution temperature and time and cooling method and speed on the particle size and morphologies of the prepared nylon elastomer powder are investigated.

Design/methodology/approach

The prepared nylon elastomer power possesses the particle size of around 50 mm and is spherical in shape, indicating that this study provides the feasible dissolution-precipitation process, a distillation cooling method and a suitable solvent to prepare nylon elastomer powders.

Findings

Compared to pure nylon 12, the nylon elastomer has a lower part bed temperature and a wider sintering window for the SLS process. The wider sintering window indicates the better SLS processibility. The lower part bed temperature is beneficial to the recycling of material and the decrease in the requirement of SLS equipment.

Originality/value

The nylon elastomer in this study has a lower part bed temperature and a wider sintering window for the SLS process. The wider sintering window indicates better SLS processibility. The lower part bed temperature is beneficial to the recycling of material and the decrease in the requirement of SLS equipment.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 July 2019

Bin Fang, Hongxiang Xue, Fuchun Sun, Yiyong Yang and Renxiang Zhu

The purpose of the paper is to present a novel cross-modal sensor whose tactile is computed by the visual information. The proposed sensor can measure the forces of…

Abstract

Purpose

The purpose of the paper is to present a novel cross-modal sensor whose tactile is computed by the visual information. The proposed sensor can measure the forces of robotic grasping.

Design/methodology/approach

The proposed cross-modal tactile sensor consists of a transparent elastomer with markers, a camera, an LED circuit board and supporting structures. The model and performance of the elastomer are analyzed. Then marker recognition method is proposed to determine the movements of the marker on the surface, and the force calculation algorithm is presented to compute the three-dimension force.

Findings

Experimental results demonstrate that the proposed tactile sensor can accurately measure robotic grasping forces.

Originality/value

The proposed cross-modal tactile sensor determines the robotic grasping forces by the images of markers. It can give more information of the force than traditional tactile sensors. Meanwhile, the proposed algorithms for forces calculation determine the superior results.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 October 2015

Jacob P. Moore and Christopher B. Williams

– This paper aims to seek to fill a gap in the literature by characterizing the fatigue life and microstructure of a printed elastomer material, the TangoBlackPlus material.

1637

Abstract

Purpose

This paper aims to seek to fill a gap in the literature by characterizing the fatigue life and microstructure of a printed elastomer material, the TangoBlackPlus material.

Design/methodology/approach

Because the TangoBlackPlus material is marketed as “rubber-like”, the printed elastomer specimens were tested according to the ASTM D4482-11 “Test Method for Rubber Property Extension Cycling Fatigue”. The microstructure of the printed material and multi-material interface was examined by slicing specimens and examining them under an optical microscope.

Findings

Findings are developed to show the relationship between elongation and expected fatigue life. Findings also indicate that the smoother, non-support encased “glossy” surface finish option for PolyJet parts improve the fatigue life of components and that there are a number of microscopic voids in the TangoBlackPlus material that seem to be concentrated at layer and print head boundaries.

Research limitations/implications

This paper provides a glimpse into the fatigue properties and microstructure of printed elastomeric parts, a previously unstudied area. This work is limited in that it only looks at specimens created in a single orientation, on a single machine, with a single material. More work is needed to understand the general fatigue properties of printed elastomers and the factors that influence fatigue life in these materials.

Practical implications

The authors provide several design guidelines based on the findings and previous work that can be used to increase the fatigue life of printed elastomer components.

Originality/value

As additive manufacturing (AM) technology moves from a prototyping tool to a tool used to create end use products, it is important to examine the expected lifespan of AM components. This work adds to the understanding of the expected product lifecycle of printed elastomer components that will likely be expected to withstand large repeated loading conditions.

Details

Rapid Prototyping Journal, vol. 21 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 April 1988

A new extensive and detailed study on the advanced elastomers market in Europe has been published by IAL Consultants Ltd., of 14 Buckingham Palace Road, London SW1W OQP…

Abstract

A new extensive and detailed study on the advanced elastomers market in Europe has been published by IAL Consultants Ltd., of 14 Buckingham Palace Road, London SW1W OQP (telephone 01 828 5036).

Details

Pigment & Resin Technology, vol. 17 no. 4
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 November 1980

Rowland Saville

2. Elastomers A wide variety of elastomers, generally synthetic, are used in modern valves of the butterfly and diaphragm types with the dual function of lining/protecting…

Abstract

2. Elastomers A wide variety of elastomers, generally synthetic, are used in modern valves of the butterfly and diaphragm types with the dual function of lining/protecting internal metal surfaces in contact with the duty and providing the necessary interference for sealing. Without resorting to exotic and expensive metals of construction, even most aggressive services can be successfully handled by variation of elastomer type, while the particular compound is designed to still retain the physical characteristics necessary for optimum sealing. The number of permutations is thus large and indeed one manufacturer offers as many as 18 different resilient liner options. The main elastomer types are summarised:

Details

Anti-Corrosion Methods and Materials, vol. 27 no. 11
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 22 June 2022

Ryan R. Ford, Akhilesh Kumar Pal, Scott C.E. Brandon, Manjusri Misra and Amar K. Mohanty

The fused filament fabrication (FFF) process is an additive manufacturing technique used in engineering design. The mechanical properties of parts manufactured by FFF are…

Abstract

Purpose

The fused filament fabrication (FFF) process is an additive manufacturing technique used in engineering design. The mechanical properties of parts manufactured by FFF are influenced by the printing parameters. The mechanical properties of rigid thermoplastics for FFF are well defined, while thermoplastic elastomers (TPE) are uncommonly investigated. The purpose of this paper is to investigate the influence of extruder temperature, bed temperature and printing speed on the mechanical properties of a thermoplastic elastomer.

Design/methodology/approach

Regression models predicting mechanical properties as a function of extruder temperature, bed temperature and printing speed were developed. Tensile specimens were tested according to ASTM D638. A 3×3 full factorial analysis, consisting of 81 experiments and 27 printing conditions was performed, and models were developed in Minitab. Tensile tests verifying the models were conducted at two selected printing conditions to assess predictive capability.

Findings

Each mechanical property was significantly affected by at least two of the investigated FFF parameters, where printing speed and extruder temperature terms influenced all mechanical properties (p < 0.05). Notably, tensile modulus could be increased by 21%, from 200 to 244 MPa. Verification prints exhibited properties within 10% of the predictions. Not all properties could be maximized together, emphasizing the importance of understanding FFF parameter effects on mechanical properties when making design decisions.

Originality/value

This work developed a model to assess FFF parameter influence on mechanical properties of a previously unstudied thermoplastic elastomer and made property predictions within 10% accuracy.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 13 May 2022

Gabriel Dämmer, Hartmut Bauer, Rüdiger Neumann and Zoltan Major

This study aims to investigate the suitability of a multi-step prototyping strategy for producing pneumatic rotary vane actuators (RVAs) for the development of lightweight…

Abstract

Purpose

This study aims to investigate the suitability of a multi-step prototyping strategy for producing pneumatic rotary vane actuators (RVAs) for the development of lightweight robots and actuation systems.

Design/methodology/approach

RVAs typically have cast aluminum housings and injection-molded seals that consist of hard thermoplastic cores and soft elastomeric overmolds. Using a combination of additive manufacturing (AM), computer numerical control (CNC) machining and elastomer molding, a conventionally manufactured standard RVA was replicated. The standard housing design was modified, and polymeric replicas were obtained by selective laser sintering (SLS) or PolyJet (PJ) printing and subsequent CNC milling. Using laser-sintered molds, actuator seals were replicated by overmolding laser-sintered polyamide cores with silicone (SIL) and polyurethane (PU) elastomers. The replica RVAs were subjected to a series of leakage, friction and durability experiments.

Findings

The AM-based prototyping strategy described is suitable for producing functional and reliable RVAs for research and product development. In a representative durability experiment, the RVAs in this study endured between 40,000 and 1,000,000 load cycles. Frictional torques were around 0.5 Nm, which is 10% of the theoretical torque at 6 bar and comparable to that of the standard RVA. Models and parameters are provided for describing the velocity-dependent frictional torque. Leakage experiments at 10,000 load cycles and 6 bar differential pressure showed that PJ housings exhibit lower leakage values (6.8 L/min) than laser-sintered housings (15.2 L/min), and PU seals exhibit lower values (8.0 l/min) than SIL seals (14.0 L/min). Combining PU seals with PJ housings led to an initial leakage of 0.4 L/min, which increased to only 1.2 L/min after 10,000 load cycles. Overall, the PU material used was more difficult to process but also more abrasion- and tear-resistant than the SIL elastomer.

Research limitations/implications

More work is needed to understand individual cause–effect relationships between specific design features and system behavior.

Originality/value

To date, pneumatic RVAs have been manufactured by large-scale production technologies. The absence of suitable prototyping strategies has limited the available range to fixed sizes and has thus complicated the use of RVAs in research and product development. This paper proves that functional pneumatic RVAs can be produced by using more accessible manufacturing technologies and provides the tools for prototyping of application-specific RVAs.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 November 2021

Samir Kasmi, Geoffrey Ginoux, Eric Labbé and Sébastien Alix

The purpose of this study is to test a flexible polymer with different characteristics compared to other classical polymers mostly used in the additive manufacturing…

Abstract

Purpose

The purpose of this study is to test a flexible polymer with different characteristics compared to other classical polymers mostly used in the additive manufacturing process, and to improve its mechanical properties and microstructure, by modifying different printing parameters, to make it more suitable for various industrial applications.

Design/methodology/approach

Seven parameters were tested, namely, nozzle temperature, bed temperature, layer thickness, printing speed, flow rate, printing time gap between two successive printed layers and raster orientation. Rheological characterizations were conducted to evaluate the influence of nozzle temperature on the melt viscosity of thermoplastic polyurethane (TPU). The effect of thermal printing parameters on the crystallinity behavior was explored. Tomographic characterizations were realized to measure the porosity and evaluate the internal structure quality of printed specimens.

Findings

Increases of the nozzle temperature, bed temperature, layer thickness and flow rate had a positive influence on the tensile strength properties of TPU with a reduction of porosity. Higher printing speeds created defects and negatively influenced the strength properties of TPU. An increase in the printing time gap between layers led to poor interlayer adhesion and decreased the tensile strength. Specimens with layers all oriented parallel to the loading direction exhibited superior mechanical properties compared to other raster orientations.

Originality/value

Thermoplastic elastomers are a unique class of polymers characterized by the combined thermal, chemical and mechanical properties of their elastomer and thermoplastic parts. TPU elastomer, as one of the elastomer families, has found an important position in the bioengineering and three-dimensional printing industry. This study reports a comprehensive study of the impact of additive manufacturing parameters on the properties of TPU.

Details

Rapid Prototyping Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 1985

S.R. FOSTER and D.R. CAPORETTI

HIGH performance and speciality elastomer applications are increasing in number as small, efficient engines are designed for the newer small cars. Engine rear crankshaft…

Abstract

HIGH performance and speciality elastomer applications are increasing in number as small, efficient engines are designed for the newer small cars. Engine rear crankshaft seals are one of the most demanding uses for fluoroelastomers today. They were first introduced in Europe during the 1960s for small, high rev/min engines. These seals have been refined and are today considered as standard in Europe. Fluoroelastomer rear crankshaft seals are being used on newly designed engines in the US and are presently being considered for older US rear crankshaft applications displacing rope packing, nitrile, polyacrylate and silicone. Engineers are finding that transverse engines and the confined or even “encapsulated” engine compartments have increased under‐the‐bonnet temperatures. Therefore, front crankshaft and, in some cases, camshaft (ohc) seals are being upgraded to the more thermal‐oxidatively stable fluoroelastomers.

Details

Industrial Lubrication and Tribology, vol. 37 no. 2
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 1 July 1987

Keith Hammond

AEROSPACE innovation, research and development, has about it an imperative factor. First is the constant striving for optimum safety, performance, comfort and the need…

Abstract

AEROSPACE innovation, research and development, has about it an imperative factor. First is the constant striving for optimum safety, performance, comfort and the need, where appropriate, to compete effectively in the military segment. Further, when we refer to innovation within the aerospace concept, we mean true innovation rather than something tacked on to a component as an appendage, to satisfy fad or fashion. Sharper turns, longer range, higher ceilings and enhanced fire‐power result from authentic innovations; on a less dramatic plane, so does the prolongation of the life of the component — an imperative factor in relation to cost effectiveness. In an earlier article we outlined the contribution made by coatings to the protection of aerospace components and now we intend to similarly cover sister elements under the general head‐ing of ‘elastomers.’

Details

Aircraft Engineering and Aerospace Technology, vol. 59 no. 7
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 1000