Search results

1 – 10 of 12
Article
Publication date: 23 October 2018

Feng Liu, Shaoai Xie, Yan Wang, Jianjun Yu and Qinghua Meng

The titania (titanium dioxide) is one of the important functional additives in the photosensitive resin and encounters the problem of stabilization in the photosensitive resin for…

Abstract

Purpose

The titania (titanium dioxide) is one of the important functional additives in the photosensitive resin and encounters the problem of stabilization in the photosensitive resin for 3D printing. This study aims to achieve enhancement in stabilization by preparation of the polymerizable titania and in situ laser-induced crystallization during 3D printing.

Design/methodology/approach

A type of polymerizable titania (AAEM@TiO2) was designed and prepared from tetrabutyl titanate (TBT) and 2-(acetoacetoxy)ethyl methacrylate (AAEM) via the sol–gel process, which was characterized by Fourier-transform infrared (FTIR) spectra, ultraviolet–visible (UV-Vis) spectra, surface bonding efficiency (SBE) and settling height (H). AAEM acted on both bonding to the titania and polymerization with the monomer in resin for stabilization. The polymerizable titania could be converted to the pigmented titania by means of laser-induced crystallization. The photosensitive resin was then formulated on the basis of optimization and used in a stereolithography apparatus (SLA) for 3D printing.

Findings

The stabilization effect of AAEM on TiO2 was achieved and the mechanism of competition in the light-consuming reactions during photocuring was proposed. The ratio of nAAEM/nTBT in AAEM@TiO2, the concentration of AAEM@TiO2 and photoinitiator (PI) used in the photosensitive resin were optimized. The anatase crystal form was indicated by X-ray diffraction (XRD) and clustering of nanocrystals was revealed by scanning electron microscopy (SEM) after SLA 3D printing.

Originality/value

This investigation provides a novel method of pigmentation by preparation of the polymerizable titania and in situ laser-induced crystallization for SLA 3D printing.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 August 2019

Arivarasi A. and Anand Kumar

The purpose of this paper is to describe, review, classify and analyze the current challenges in three-dimensional printing processes for combined electrochemical and microfluidic…

Abstract

Purpose

The purpose of this paper is to describe, review, classify and analyze the current challenges in three-dimensional printing processes for combined electrochemical and microfluidic fabrication areas, which include printing devices and sensors in specified areas.

Design/methodology/approach

A systematic review of the literature focusing on existing challenges is carried out. Focused toward sensors and devices in electrochemical and microfluidic areas, the challenges are oriented for a discussion exploring the suitability of printing varied geometries in an accurate manner. Classifications on challenges are based on four key categories such as process, material, size and application as the printer designs are mostly based on these parameters.

Findings

A key three-dimensional printing process methodologies have their unique advantages compared to conventional printing methods, still having the challenges to be addressed, in terms of parameters such as cost, performance, speed, quality, accuracy and resolution. Three-dimensional printing is yet to be applied for consumer usable products, which will boost the manufacturing sector. To be specific, the resolution of printing in desktop printers needs improvement. Printing scientific products are halted with prototyping stages. Challenges in three-dimensional printing sensors and devices have to be addressed by forming integrated processes.

Research limitations/implications

The research is underway to define an integrated process-based on three-dimensional Printing. The detailed technical details are not shared for scientific output. The literature is focused to define the challenges.

Practical implications

The research can provide ideas to business on innovative designs. Research studies have scope for improvement ideas.

Social implications

Review is focused on to have an integrated three-dimensional printer combining processes. This is a cost-oriented approach saving much of space reducing complexity.

Originality/value

To date, no other publication reviews the varied three-dimensional printing challenges by classifying according to process, material, size and application aspects. Study on resolution based data is performed and analyzed for improvements. Addressing the challenges will be the solution to identify an integrated process methodology with a cost-effective approach for printing macro/micro/nano objects and devices.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2620

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 August 2024

Juanyan Miao, Yiwen Li, Siyu Zhang, Honglei Zhao, Wenfeng Zou, Chenhe Chang and Yunlong Chang

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for…

Abstract

Purpose

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for welding technology, so the optimization and improvement of traditional welding methods become urgent needs.

Design/methodology/approach

External magnetic field assisted welding is an emerging technology in recent years, acting in a non-contact manner on the welding. The action of electromagnetic forces on the arc plasma leads to significant changes in the arc behavior, which affects the droplet transfer and molten pool formation and ultimately improve the weld seam formation and joint quality.

Findings

In this paper, different types of external magnetic fields are analyzed and summarized, which mainly include external transverse magnetic field, external longitudinal magnetic field and external cusp magnetic field. The research progress of welding behavior under the effect of external magnetic field is described, including the effect of external magnetic field on arc morphology, droplet transfer and weld seam formation law.

Originality/value

However, due to the extremely complex physical processes under the action of the external magnetic field, the mechanism of physical fields such as heat, force and electromagnetism in the welding has not been thoroughly analyzed, in-depth theoretical and numerical studies become urgent.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 May 2023

Wenlong Cai, Yongkang Zhang and Jianhang Liu

The purpose of this study is to reduce the cracks, pores and unfused defects in arc welding, improve the crystalline structure of the weld, refine its grains and improve the…

Abstract

Purpose

The purpose of this study is to reduce the cracks, pores and unfused defects in arc welding, improve the crystalline structure of the weld, refine its grains and improve the mechanical properties.

Design/methodology/approach

Taking E690 marine steel as the research object, the experiment adopts a new process method of laser forging coupled arc welding. Welding for comparative experiments. Experiments show that the “V”-shaped groove arc welding process has a larger fusion area, but has pores, the arc current is 168 A, the arc voltage is 28 V and the welding speed is 600 mm/min.

Findings

It can be seen from tensile tests that the coupling welding process has the highest tensile strength and yield strength, 872 MPa and 692 MPa, respectively, and the fracture elongation is 29.29%. The single-beam laser forging coupled arc welding process has a distance of laser and wire of 6–8 mm, a laser wavelength of 1,064 nm and the highest weld fusion ratio. The microhardness test shows that the average hardness of single-beam laser forging in the weld zone is 487.54 HV, which is 10.30% higher than that of arc welding. The average hardness in the fusion zone is 788.08 HV, which is 14.52% higher than that of the arc welding process.

Originality/value

The originality of the experiment: proposed a new process method of coupling arc repair for offshore steel forging; adopted a new process method of simultaneous coupling of single-beam short-pulse laser, double-beam short-pulse laser and arc welding; and obtained effect of pulsed laser and arc composite repair on porosity and fusion of E690 marine steel welds.

Details

Rapid Prototyping Journal, vol. 29 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 June 2022

Amir Asgharian, Reza Yadipour, Gholamreza Kiani and Hamed Baghban

The purpose of this study is to design a plasmonic structure that can be used simultaneously as a heater and a refractive index sensor applicable for heating and sensing cycles of…

Abstract

Purpose

The purpose of this study is to design a plasmonic structure that can be used simultaneously as a heater and a refractive index sensor applicable for heating and sensing cycles of lab-on-chip (LOC).

Design/methodology/approach

The authors report on the full optical method applicable in the heating and sensing cycles of LOC based on the plasmonic nanostructure. The novelty of this proposed structure is due to the fact that a structure simultaneously acts as a heater and a sensor.

Findings

In terms of the performance of the proposed structure as an analyte detection sensor, in addition to the real-time measurement, there is no need to labeling the sample. In terms of the performance of the proposed structure as a plasmonic heater, the uniformity and speed of the heating and cooling cycles have been greatly improved. Also, there is no need for experts and laboratory conditions; therefore, our proposed method can meet the conditions of point of care testing.

Originality/value

The authors confirm that this work is original and has not been published elsewhere nor it is currently under consideration for publication elsewhere.

Details

Sensor Review, vol. 42 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 April 2005

Jaroslav Mackerle

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or…

5146

Abstract

Purpose

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or as welding and brazing fixtures, etc. Ceramic materials are frequently used in industries where a wear and chemical resistance are required criteria (seals, liners, grinding wheels, machining tools, etc.). Electrical, magnetic and optical properties of ceramic materials are important in electrical and electronic industries where these materials are used as sensors and actuators, integrated circuits, piezoelectric transducers, ultrasonic devices, microwave devices, magnetic tapes, and in other applications. A significant amount of literature is available on the finite element modelling (FEM) of ceramics and glass. This paper gives a listing of these published papers and is a continuation of the author's bibliography entitled “Finite element modelling of ceramics and glass” and published in Engineering Computations, Vol. 16, 1999, pp. 510‐71 for the period 1977‐1998.

Design/methodology/approach

The form of the paper is a bibliography. Listed references have been retrieved from the author's database, MAKEBASE. Also Compendex has been checked. The period is 1998‐2004.

Findings

Provides a listing of 1,432 references. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Originality/value

This paper makes it easy for professionals working with the numerical methods with applications to ceramics and glasses to be up‐to‐date in an effective way.

Details

Engineering Computations, vol. 22 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 January 2018

Barry Haworth, John R. Tyrer and Zhou Zhou

There is a requirement to match selective laser melting (SLM) technologies to a wider range of polymeric materials, as the existing market for SLM powders is dominated by…

Abstract

Purpose

There is a requirement to match selective laser melting (SLM) technologies to a wider range of polymeric materials, as the existing market for SLM powders is dominated by polyamide PA12. Drivers include the tailoring of physical properties to individual applications or cost reduction. Polypropylene (PP) currently has limited use in SLM; so, this paper aims to explore the potential use of PP materials of varying molecular weight (Mw).

Design/methodology/approach

PP polymers of differing Mw were characterised using a range of analytical techniques, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), rotational rheometry and real-time hot-stage (optical) microscopy.

Findings

The techniques are sufficiently sensitive to distinguish Mw effects, notably in terms of material viscosity. The stable sintering region for SLM has been defined clearly. Some success was achieved in melting parts using all grades of PP, including higher Mw grades, which potentially offer improved mechanical performance.

Research limitations/implications

The range of techniques (DSC, oxidative induction time and TGA) form an effective analytical package with which to consider new polymeric materials for SLM.

Practical implications

High-Mw PP polymers, in tape or powder form, have potential use in SLM processes, providing scope to enhance part properties in future.

Originality/value

This is believed to be the first in-depth study noting the influence of PP Mw on important physical performance in a proprietary SLM process, using holographic beam manipulation.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 April 2023

Kawaljit Singh Randhawa

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and…

Abstract

Purpose

The purpose of this study is to prepare a state-of-the-art review on advanced ceramic materials including their fabrication techniques, characteristics, applications and wettability.

Design/methodology/approach

This review paper presents the various types of advanced ceramic materials according to their compounding elements, fabrication techniques of advanced ceramic powders as well as their consolidation, their characteristics, applications and wetting properties. Hydrophobic/hydrophilic properties of advanced ceramic materials are described in the paper with their state-of-the-art application areas. Optical properties of fine ceramics with their intrinsic characteristics are also presented within. Special focus is given to the brief description of application-based manipulation of wetting properties of advanced ceramics in the paper.

Findings

The study of wetting/hydrophobicity/hydrophilicity of ceramic materials is important by which it can be further modified to achieve the required applications. It also makes some sense that the material should be tested for its wetting properties when it is going to be used in some important applications like biomedical and dental. Also, these advanced ceramics are now often used in the fabrication of filters and membranes to purify liquid/water so the study of wetting characteristics of these materials becomes essential. The optical properties of advanced ceramics are equally making them suitable for many state-of-the-art applications. Dental, medical, imaging and electronics are the few sectors that use advanced ceramics for their optical properties.

Originality/value

This review paper includes various advanced ceramic materials according to their compounding elements, different fabrication techniques of powders and their consolidation, their characteristics, various application area and hydrophobic/hydrophilic properties.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 January 2016

David Joguet, Sophie Costil, Hanlin Liao and Yoann Danlos

The purpose of this paper consists in the optimization and understanding of the Selective Laser Melting (SLM) manufacturing process of biomaterials, such as T40 and CoCrMo, as…

Abstract

Purpose

The purpose of this paper consists in the optimization and understanding of the Selective Laser Melting (SLM) manufacturing process of biomaterials, such as T40 and CoCrMo, as scaffolds. Moreover, process optimization is also challenging, with regards to the huge number of parameters and their influence on the finished product.

Design/methodology/approach

The paper opted for an exploratory study using Taguchi analysis method to precisely identify the most relevant parameters and justify the energy estimation.

Findings

The study showed that SLM fits perfectly with the T40 and CoCrMo part manufacturing. This method allowed to have a complete overview of all the potential applications of SLM for implant manufacturing.

Originality/value

With this research approach, the results may be generalized to other material and showed a good theoretical approach.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 12