Search results

1 – 8 of 8
Article
Publication date: 6 July 2020

Kamran Rashidi

Data envelopment analysis (DEA) and analytical hierarchy process (AHP) are two widely applied methods to evaluate and rank suppliers in terms of sustainability. In this study, to…

Abstract

Purpose

Data envelopment analysis (DEA) and analytical hierarchy process (AHP) are two widely applied methods to evaluate and rank suppliers in terms of sustainability. In this study, to investigate the extent to which potential differences in the outcomes of these two methods influence the benchmarking strategies, a comparative analysis based on a common set of data gathered from 19 logistics service providers is implemented.

Design/methodology/approach

As suppliers' sustainability cannot be improved in a single-step process due to several limitations, improvement needs to proceed gradually. Therefore, using the self-organising map method, the suppliers were classified into clusters within a novel framework for gradually improving their sustainability. Then, the two processes of gradual improvement based on the outcomes of DEA and AHP were compared.

Findings

The findings show that although the rankings of suppliers guided by the methods correlated to a high degree, the benchmarking strategies provided by the methods for gradually improving the sustainability of suppliers differed considerably. In particular, whereas AHP suggests a benchmarking policy better suited for unsustainable or less sustainable suppliers with limited access to resources, DEA proposes one for suppliers able to dramatically boost their sustainability with few quick, significant leaps in performance.

Originality/value

First, this study revealed a novel gradual improvement framework using the self-organising map method. Second, it clarified the extent to which the benchmarking policies are influenced by the type of evaluation method.

Details

Benchmarking: An International Journal, vol. 27 no. 8
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 2 October 2017

Syed Tauseef Mohyud-Din, Muhammad Usman, Kamran Afaq, Muhammad Hamid and Wei Wang

The purpose of this study is to analyze the effects of carbon nanotubes (CNTs) in the Marangoni convection boundary layer viscous fluid flow. The analysis and formulation for both…

Abstract

Purpose

The purpose of this study is to analyze the effects of carbon nanotubes (CNTs) in the Marangoni convection boundary layer viscous fluid flow. The analysis and formulation for both types of CNTs, namely, single-walled (SWCNTs) and multi-walled (MWCNTs), are described. The influence of thermal radiation effect assumed in the form of energy expression.

Design/methodology/approach

Appropriate transformations reduced the partial differential systems to a set of nonlinear ordinary differential equations (ODEs). The obtained nonlinear ODE set is solved via the least squares method. A detailed comparison between outcomes obtained by the least squares method, RK-4 and already published work is available.

Findings

Nusselt number was analyzed and found to be more effective for nanoparticle volume fraction and larger radiation parameters. Additionally, the error and convergence analysis for the least squares method was presented to show the efficiency of the said algorithm.

Originality/value

The results reveal that velocity is a decreasing function of suction for both CNTs. While enhancing the nanoparticle volume fraction, an increase for both thermal boundary layer thickness and temperature was attained. The radiation parameter has an increasing function as temperature. Velocity behavior is the same for nanoparticle volume fraction and suction. It was observed that velocity is less in SWCNTs as compared to MWCNTs.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 April 2020

Umair Rashid and Haiyi Liang

In this article, we consider the magnetohydrodynamic (MHD) nanofluid flow over a rotating stretchable disk through porous medium. For porous medium, Darcy’s relation is used. It…

208

Abstract

Purpose

In this article, we consider the magnetohydrodynamic (MHD) nanofluid flow over a rotating stretchable disk through porous medium. For porous medium, Darcy’s relation is used. It also encompassed the impact of nanoparticles shape on MHD nanofluid flow and heat transfer. The effect of thermal radiation and Joule heating is also being considered.

Design/methodology/approach

Three categories of nanoparticles are taken into deliberation, i.e. copper, silver and titanium oxide. The nanofluid is made of pure water and various types of sphere- and lamina-shaped nanoparticles. By using appropriate similarity transformation, the governing partial differential equations are transformed to ordinary one. The coupled ordinary differential equations system is tackled numerically by bvp4c method.

Findings

The impact of various pertinent parameters, i.e. solid volume fraction, Hartman number, thermal radiations parameter, Reynolds number, Eckert number, porosity parameter and ratio parameter, on flow and Nusselt number with a fixed value of Prandtl number at 6.2 is discussed in details. The obtained results are presented in the concluding section. The lamina shape of nanoparticles in silver-water performed an excellent role on temperature distribution. The heat transfer rate of lamina shape in copper-water was found to be greater in the system of flow regime.

Originality/value

The authors have discussed the shape effect of nanoparticles on MHD nanofluid flow over a rotating stretchable disk through porous medium using three categories of nanoparticles, such as copper, silver and titanium oxide. To the best of the authors’ knowledge, this is the first study on mass and heat transfer nanofluid flow and no such study is yet published in literature. A detailed mathematical analysis has also to be carried out to prove the regularity of model. The authors believe that the numerical results are original and have not been copied from any other sources.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 December 2019

Ankita Bisht and Rajesh Sharma

The purpose of this study is to provide a numerical investigation of Casson nanofluid along a vertical nonlinear stretching sheet with variable thermal conductivity and viscosity.

Abstract

Purpose

The purpose of this study is to provide a numerical investigation of Casson nanofluid along a vertical nonlinear stretching sheet with variable thermal conductivity and viscosity.

Design/methodology/approach

The boundary-layer equations are presented in the dimensionless form using proper non-similar transformations. The subsequent non-dimensional nonlinear partial differential equations are solved using the implicit finite difference technique. To linearize the nonlinear terms present in these equations, the quasilinearization technique is used.

Findings

The investigation showed graphically the temperature, velocity and nanoparticle volume fraction for particular included physical parameters. It is observed that the velocity profile decreases with an increase in the values of Casson fluid parameter while increases with an increase in the viscosity variation parameter. The temperature profile enhances for large values of velocity variation parameter and thermal conductivity parameter while it reduces for large values of thermal buoyancy parameter. Further, the Nusselt number and skin-friction coefficient are introduced which are helpful in determining the physical aspects of Casson nanofluid flow.

Practical implications

The immediate control of heat transfer in the industrial system is crucial because of increasing energy prices. Recently, nanotechnology is proposed to control the heat transfer phenomenon. Ongoing research in complex nanofluid has been fruitful in various applications such as solar thermal collectors, nuclear reactors, electronic equipment and diesel–electric conductor. A reasonable amount of nanoparticle when added to the base fluid in solar thermal collectors serves to deeper absorption of incident radiation, and hence it upgrades the efficiency of the solar thermal collectors.

Originality/value

The non-similar solution of Casson nanofluid due to a vertical nonlinear stretching sheet with variable viscosity and thermal conductivity is discussed in this work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 December 2019

B.J. Gireesha and S. Sindhu

Fully developed Casson fluid flow through vertical microchannel is deliberated in the presence of thermal radiation. The two predominant features of micro scale phenomenon such as…

Abstract

Purpose

Fully developed Casson fluid flow through vertical microchannel is deliberated in the presence of thermal radiation. The two predominant features of micro scale phenomenon such as velocity slip and temperature jump are considered. The paper aims to discuss this issue.

Design/methodology/approach

The governing equations of the physical phenomenon are solved using Runge–Kutta–Fehlberg fourth fifth order method.

Findings

The outcome of the present work is discussed through graphs. This computation shows that entropy generation rate decreases with enhancing wall ambient temperature difference ratio and fluid wall interaction parameter. Also, it is found that Bejan number is fully retarded with rise in fluid wall interaction parameter. Enhancement in heat transfer or Nusselt number is achieved by increasing the wall ambient temperature ratio and fluid wall interaction parameter.

Originality/value

Casson liquid flow through microchannel is analyzed by considering temperature jump and velocity slip. This computation shows that entropy generation rate decreases with enhancing wall ambient temperature difference ratio.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 December 2017

N. Nithyadevi, P. Gayathri and A. Chamkha

The paper aims to examine the boundary layers of a three-dimensional stagnation point flow of Al-Cu nanoparticle-suspended water-based nanofluid in an electrically conducting…

Abstract

Purpose

The paper aims to examine the boundary layers of a three-dimensional stagnation point flow of Al-Cu nanoparticle-suspended water-based nanofluid in an electrically conducting medium. The effect of magnetic field on second-order slip effect and convective heating is also taken into account.

Design/methodology/approach

The thermophysical properties of alloy nanoparticles such as density, specific heat capacity and thermal conductivity are computed using appropriate formula. The non-linear parabolic partial differential equations are transformed to ordinary differential equations and solved by shooting technique.

Findings

The influence of compositional variation of alloy nanoparticle, nanoparticle concentration, magnetic effect, slip parameters and Biot number are presented for various flow characteristics. Interesting results on skin friction and Nusselt number are obtained for different composition of aluminium and copper.

Originality/value

A novel result of the analysis reveals that impact of magnetic field near the boundary is suppressed by the slip effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 February 2023

Tahir Naseem and Azeem Shahzad

The purpose of this study is to examine the flow and heat transfer performance of titanium oxide/water and copper/water nanofluids with varying nanoparticle morphologies by…

Abstract

Purpose

The purpose of this study is to examine the flow and heat transfer performance of titanium oxide/water and copper/water nanofluids with varying nanoparticle morphologies by considering magnetic, Joule heating and viscous dissipation effects. Furthermore, it studies the irreversibility caused by the flow of a hydromagnetic nanofluid past a radiated stretching sheet by considering different shapes of TiO2 and Cu nanoparticles with water as the base fluid.

Design/methodology/approach

In this study, the authors investigated entropy production in an unsteady two-dimensional magneto-hydrodynamic nanofluid regime using water as the base fluid and five unique TiO2 and Cu nanoparticle morphologies. Using appropriate similarity transformations, the controlling nonlinear system of partial differential equations is transformed into a system of ordinary differential equations. The shooting technique with Runge–Kutta method was then used to solve these equations quantitatively. The findings of this study are depicted graphically, and the skin friction corresponding to various nanoparticle geometries and physical parameter variations is tabulated.

Findings

To assess the reliability of the current findings, a tabular representation of the data was compared to that of previously published studies. It is noted that a reduction in thermal energy was detected as a result of the higher levels of Prandtl number (Pr). It is further analysed that the highest heat energy generation of TiO2 nanoparticles was larger than that of Cu nanoparticles. The most important finding was that the sphere-shaped Cu/H2O nanofluid had the lowest velocity and greatest temperature. Also, Cu nanoparticles in the shape of platelets generate the most entropy, while TiO2 nanoparticles in the shape of spheres generate the least.

Originality/value

To the best of the knowledge of the authors, the attempt to investigate the previously unexplored shape effects of TiO2 and Cu nanoparticles on the heat transfer enhancement and inherent irreversibility caused by hydromagnetic nanofluid flow past a radiated stretching sheet with magnetic, Joule heating and viscous dissipation effects. This study fills this gap in the existing literature and encourages scientists, engineers and businesses to do more research in this area. This model can be used to improve heat transfer in systems that use renewable energy, thermal management in industry and the processing of materials.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 November 2022

Saeed Dinarvand, Hamza Berrehal, Ioan Pop and Ali. J. Chamkha

The purpose of this paper is to study and analyze the converging/diverging channel flow and heat transfer with the multiple slips effect, which is a development of the…

Abstract

Purpose

The purpose of this paper is to study and analyze the converging/diverging channel flow and heat transfer with the multiple slips effect, which is a development of the Jeffery–Hamel problem using the mass-based hybrid nanofluid algorithm. Whereas transferring biological liquid by arteries is a vital issue, mathematical modeling of hybrid nanofluid flow containing titanium dioxide and silver as nanoparticles and blood as base liquid through a converging/diverging duct, which can be a useful analysis for the fields of drug delivery, has been investigated.

Design/methodology/approach

The present approach is based on the Tiwari–Das nanofluid method. In this modeling, the volume fraction of nanoparticles is replaced with nanoparticles masses. The partial differential equations of the mass, momentum and energy conservations are changed to the system of ordinary differential equations through the similarity solution method. The final governing equations are solved by Runge–Kutta–Fehlberg procedure and shooting method.

Findings

The effect of emerging parameters on the temperature, the velocity, the Nusselt number and the skin friction have been analyzed by graphical and tabular reports. It is observed that the opposition to hybrid nanofluid flow in the attendance of particles of nonspherical shapes is more enhanced than those in the attendance of particles of spherical shapes. This issue demonstrates that the rheology of a hybrid nanofluid is dependent on the shape of particles. Besides, backflow regimes form in the divergent channel for high values of Reynolds number, m2 and a. Indeed, this modeling for the hybrid nanofluid can be useful in different technologies and industries such as biological ones. It is worth mentioning that the excellent achievement of the mass-based algorithm for heat transfer and hybrid nanofluid flow is the most important success of this study.

Originality/value

The main originality is related to the development of the Jeffery–Hamel problem using the mass-based hybrid nanofluid algorithm. This new mass-based method is a single-phase hybrid nanofluid approach that the inputs are masses of nanoparticles and base liquid. Besides, considering the multiple slips effect and also pure blood as base fluid in this problem are also new.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 8 of 8